Remote Sensing of Aerosol Optical Depth in a global surface network

Atmospheric aerosols provide, through their direct and indirect effects, a predominantly negative or cooling contribution to the global radiation budget. Their integral optical activity is summarized in the aerosol optical depth (AOD) that can be derived from measurements of transmitted sunlight. In the early nineties, the World Meteorological Organization (WMO) deemed the quality of their long-time AOD observations insufficient for climate studies. A World Optical depth Research and Calibration Center (WORCC) was established at Davos in 1996 and given the task by WMO to develop stable instrumentation and improved methods of calibration and observation of AOD. These new developments should be demonstrated in a global pilot network. The present thesis gives an account of the research and development work performed during implementation of these tasks. After introducing the role of aerosols in climate change and the difficulties in their characterization, a personal review of the history of turbidity or AOD measurements is given. Algorithms for AOD, methods of calibration, and the construction of a Precision Filter Radiometer (PFR) are discussed. The world-wide AOD network of PFR instruments is presented. First results of AOD measurements at network stations are given as time series and climatological values.

[1]  H. Neckel,et al.  The solar radiation between 3300 and 12500 Å , 1984 .

[2]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[3]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[4]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[5]  J. Michalsky The Astronomical Almanac's algorithm for approximate solar position (1950 - 2050). , 1988 .

[6]  John George Children Esq. F.R.S. XXIII. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction.—The bakerian lecture , 1861 .

[7]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[8]  D. M. Gottlieb,et al.  Solar flux and its variations , 1974 .

[9]  A. T. Young Air mass and refraction. , 1994, Applied optics.

[10]  H. Grassl Possible Changes of Planetary Albedo Due to Aerosol Particles , 1979 .

[11]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[12]  David G. Streets,et al.  Two‐decadal aerosol trends as a likely explanation of the global dimming/brightening transition , 2006 .

[13]  F. Bréon Comment on rayleigh-scattering calculations for the terrestrial atmosphere. , 1998, Applied optics.

[14]  H. Grassl Calculated circumsolar radiation as a function of aerosol type, field of view, wavelength, and optical depth. , 1971, Applied optics.

[15]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[16]  G. Shaw The Arctic Haze Phenomenon , 1995 .

[17]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[18]  G. Shaw Error analysis of multi-wavelength sun photometry , 1976 .

[19]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[20]  R. Cebula,et al.  Solar Irradiance Reference Spectra , 2013 .

[21]  L. Barrie,et al.  Arctic air pollution: An overview of current knowledge , 1986 .

[22]  C. Wehrli,et al.  Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp. , 1995, Applied optics.

[23]  A. Heimo,et al.  Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer. , 2001, Applied Optics.

[24]  A. Stohl,et al.  Pan-Arctic enhancement of light absorbing aerosol concentration due to North American boreal forest fires during summer 2004 , 2006 .

[25]  S. Twomey,et al.  The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration , 1959 .

[26]  Alexander Smirnov,et al.  Comparison of aerosol optical depth from four solar radiometers during the fall 1997 ARM intensive observation period , 1999 .

[27]  A. T. Young,et al.  Revised optical air mass tables and approximation formula. , 1989, Applied optics.

[28]  B. Holben,et al.  Sunlight transmission through desert dust and marine aerosols: Diffuse light corrections to Sun photometry and pyrheliometry , 2004 .

[29]  R. Green,et al.  Water vapor column abundance retrievals during FIFE , 1992 .

[30]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[31]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[32]  Glenn E. Shaw,et al.  Investigations of Atmospheric Extinction Using Direct Solar Radiation Measurements Made with a Multiple Wavelength Radiometer. , 1973 .

[33]  C. Fröhlich,et al.  Solar Spectral Irradiance Measurements at 368 nm, 500 nm and 778 nm , 1991 .

[34]  J. Geist,et al.  Quantum efficiency of the p-n junction in silicon as an absolute radiometric standard. , 1979, Applied optics.

[35]  O. Boucher,et al.  Satellite-based estimate of the direct and indirect aerosol climate forcing , 2008 .

[36]  A. J. Miller,et al.  Factors affecting the detection of trends: Statistical considerations and applications to environmental data , 1998 .

[37]  H. Neckel,et al.  THE RADIATION OF THE SOLAR PHOTOSPHERE FROM 2000 A TO 100 . , 1968 .

[38]  J. Michalsky,et al.  Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. , 1994, Applied optics.

[39]  J. Fischer,et al.  Accurate calibration of filter radiometers against a cryogenic radiometer using a trap detector , 1995 .

[40]  Alexander Ignatov,et al.  Intercomparison of Satellite Retrieved Aerosol Optical Depth over the Ocean , 2004 .

[41]  S. Voigt,et al.  Effective albedo derived from UV measurements in the Swiss Alps , 2001 .

[42]  Douglas V. Hoyt,et al.  A Redetermination of the Rayleigh Optical Depth and its Application to Selected Solar Radiation Problems. , 1977 .

[43]  Brian Cairns,et al.  Automated cloud screening algorithm for MFRSR data , 2004 .

[44]  A. Stohl,et al.  Pan‐Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004 , 2006 .

[45]  Brian Cairns,et al.  Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part I: Retrieval Algorithm , 2002 .

[46]  P. Pilewskie,et al.  Pinatubo and pre‐Pinatubo optical‐depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data , 1993 .

[47]  R. Penndorf,et al.  Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficient for the Spectral Region between 0.2 and 20.0 μ and Their Application to Atmospheric Optics , 1957 .

[48]  Petr Chylek,et al.  Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval , 2003 .

[49]  H. Kunze,et al.  On the Rayleigh scattering in air , 1978 .

[50]  C. Wehrli,et al.  Calibrations of filter radiometers for determination of atmospheric optical depth , 2000 .

[51]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[52]  P. Teillet,et al.  Rayleigh optical depth comparisons from various sources. , 1990, Applied optics.

[53]  BouguerPierre,et al.  Essai d'optique sur la gradation de la lumière , 1922, Nature.

[54]  Alexandros Papayannis,et al.  Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations , 2004 .

[55]  M. Andreae Raising dust in the greenhouse , 1996, Nature.

[56]  B. Forgan,et al.  General method for calibrating Sun photometers. , 1994, Applied optics.

[57]  G. Brasseur,et al.  Stratospheric chemical and thermal response to long‐term variability in solar UV irradiance , 1981 .

[58]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[59]  J. Y. BUCHANAN,et al.  Solar Radiation , 1901, Nature.

[60]  J. Deluisi,et al.  Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992 , 1994 .

[61]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[62]  R. N. Griffin,et al.  Determination of extraterrestrial solar spectral irradiance from a research aircraft. , 1969, Applied optics.

[63]  Nels S. Laulainen,et al.  Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links programs , 2001 .

[64]  B. Herman,et al.  Alternate approach to the analysis of solar photometer data. , 1981, Applied optics.

[65]  Alexander Smirnov,et al.  Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements , 2000 .

[66]  J. Michalsky,et al.  Objective algorithms for the retrieval of optical depths from ground-based measurements. , 1994, Applied optics.

[67]  Yoram J. Kaufman,et al.  Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000 , 2004 .

[68]  E. C. Flowers,et al.  Atmospheric Turbidity over the United States, 1961–1966 , 1969 .

[69]  Soon-Chang Yoon,et al.  Global Surface-Based Sun Photometer Network for Long-Term Observations of Column Aerosol Optical Properties: Intercomparison of Aerosol Optical Depth , 2008 .

[70]  J. Slusser,et al.  Field comparison of network Sun photometers , 2003 .

[71]  A. Drummond,et al.  Extraterrestrial solar spectrum , 1973 .

[72]  W. Schüepp Die Bestimmung der Komponenten der atmosphärischen Trübung aus Aktinometermessungen , 1949 .

[73]  D. Ruppert,et al.  A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares , 1988 .

[74]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[75]  J. Strutt Scientific Papers: On the Transmission of Light through an Atmosphere containing Small Particles in Suspension, and on the Origin of the Blue of the Sky , 2009 .

[76]  F. Volz,et al.  Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellenlängenabhängigkeit der Dunsttrübung , 1959 .

[77]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation. II , 1930 .

[78]  Nigel P. Fox,et al.  Trap Detectors and their Properties , 1991 .

[79]  R Pello,et al.  Results of an international comparison of spectral responsivity of silicon photodetectors , 1995 .

[80]  Alexander Ignatov,et al.  The lognormal distribution as a reference for reporting aerosol optical depth statistics; Empirical tests using multi‐year, multi‐site AERONET Sunphotometer data , 2000 .

[81]  Connor J. Flynn,et al.  Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM Aerosol IOP 2003 , 2006 .

[82]  J. Burrows,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME — 2 . TEMPERATURE-DEPENDENT ABSORPTION CROSS SECTIONS OF O 3 IN THE 231 — 794 NM RANGE , 1998 .

[83]  B. Forgan,et al.  Aerosol Measurement in the Australian Outback: Intercomparison of Sun Photometers , 2003 .

[84]  R. Schotland,et al.  Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol. , 1986, Applied optics.

[85]  S. Biggar,et al.  Evaluation of the Applicability of Solar and Lamp Radiometric Calibrations of a Precision Sun Photometer Operating Between 300 and 1025 nm. , 1998, Applied optics.

[86]  A. Bucholtz,et al.  Rayleigh-scattering calculations for the terrestrial atmosphere. , 1995, Applied optics.

[87]  David D. Turner,et al.  Average aerosol extinction and water vapor profiles over the Southern Great Plains , 2001 .

[88]  T. Nakajima,et al.  Retrieval of the optical properties of aerosols from aureole and extinction data. , 1983, Applied optics.

[89]  F. E. Volz Some results of turbidity networks , 1969 .

[90]  Jean H. Meeus,et al.  Astronomical Algorithms , 1991 .

[91]  Y. Kaufman,et al.  Aerosol climatology using a tunable spectral variability cloud screening of AERONET data , 2006 .

[92]  W. E. Knowles Middleton,et al.  Pierre Bouguer's Optical Treatise on the Gradation of Light , 1961 .

[93]  Edson R. Peck,et al.  Dispersion of Air , 1972 .

[94]  F. Linke Vorbereitende betrachtungen : dietheorie der zerstreuung, extinktion und polarisation des lichtes in der atmosphare : die sonnenstrahlung und ihre schwachung in der atmosphare , 1941 .

[95]  F. Kasten,et al.  A new table and approximation formula for the relative optial air mass , 1964 .

[96]  P. Valko Vereinfachtes Auswerteverfahren für die Schüeppsche Methode zur Bestimmung der atmosphärischen Trübung , 1961 .