Remote Sensing of Aerosol Optical Depth in a global surface network
暂无分享,去创建一个
[1] H. Neckel,et al. The solar radiation between 3300 and 12500 Å , 1984 .
[2] B. Albrecht. Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.
[3] Alexander Smirnov,et al. Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .
[4] S. Solomon. The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .
[5] J. Michalsky. The Astronomical Almanac's algorithm for approximate solar position (1950 - 2050). , 1988 .
[6] John George Children Esq. F.R.S.. XXIII. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction.—The bakerian lecture , 1861 .
[7] J. Slusser,et al. On Rayleigh Optical Depth Calculations , 1999 .
[8] D. M. Gottlieb,et al. Solar flux and its variations , 1974 .
[9] A. T. Young. Air mass and refraction. , 1994, Applied optics.
[10] H. Grassl. Possible Changes of Planetary Albedo Due to Aerosol Particles , 1979 .
[11] T. Eck,et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .
[12] David G. Streets,et al. Two‐decadal aerosol trends as a likely explanation of the global dimming/brightening transition , 2006 .
[13] F. Bréon. Comment on rayleigh-scattering calculations for the terrestrial atmosphere. , 1998, Applied optics.
[14] H. Grassl. Calculated circumsolar radiation as a function of aerosol type, field of view, wavelength, and optical depth. , 1971, Applied optics.
[15] G. Thuillier,et al. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .
[16] G. Shaw. The Arctic Haze Phenomenon , 1995 .
[17] Anders Ångström,et al. On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .
[18] G. Shaw. Error analysis of multi-wavelength sun photometry , 1976 .
[19] S. Twomey. Pollution and the Planetary Albedo , 1974 .
[20] R. Cebula,et al. Solar Irradiance Reference Spectra , 2013 .
[21] L. Barrie,et al. Arctic air pollution: An overview of current knowledge , 1986 .
[22] C. Wehrli,et al. Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp. , 1995, Applied optics.
[23] A. Heimo,et al. Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer. , 2001, Applied Optics.
[24] A. Stohl,et al. Pan-Arctic enhancement of light absorbing aerosol concentration due to North American boreal forest fires during summer 2004 , 2006 .
[25] S. Twomey,et al. The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration , 1959 .
[26] Alexander Smirnov,et al. Comparison of aerosol optical depth from four solar radiometers during the fall 1997 ARM intensive observation period , 1999 .
[27] A. T. Young,et al. Revised optical air mass tables and approximation formula. , 1989, Applied optics.
[28] B. Holben,et al. Sunlight transmission through desert dust and marine aerosols: Diffuse light corrections to Sun photometry and pyrheliometry , 2004 .
[29] R. Green,et al. Water vapor column abundance retrievals during FIFE , 1992 .
[30] H. L. Miller,et al. Climate Change 2007: The Physical Science Basis , 2007 .
[31] Michael D. King,et al. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .
[32] Glenn E. Shaw,et al. Investigations of Atmospheric Extinction Using Direct Solar Radiation Measurements Made with a Multiple Wavelength Radiometer. , 1973 .
[33] C. Fröhlich,et al. Solar Spectral Irradiance Measurements at 368 nm, 500 nm and 778 nm , 1991 .
[34] J. Geist,et al. Quantum efficiency of the p-n junction in silicon as an absolute radiometric standard. , 1979, Applied optics.
[35] O. Boucher,et al. Satellite-based estimate of the direct and indirect aerosol climate forcing , 2008 .
[36] A. J. Miller,et al. Factors affecting the detection of trends: Statistical considerations and applications to environmental data , 1998 .
[37] H. Neckel,et al. THE RADIATION OF THE SOLAR PHOTOSPHERE FROM 2000 A TO 100 . , 1968 .
[38] J. Michalsky,et al. Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. , 1994, Applied optics.
[39] J. Fischer,et al. Accurate calibration of filter radiometers against a cryogenic radiometer using a trap detector , 1995 .
[40] Alexander Ignatov,et al. Intercomparison of Satellite Retrieved Aerosol Optical Depth over the Ocean , 2004 .
[41] S. Voigt,et al. Effective albedo derived from UV measurements in the Swiss Alps , 2001 .
[42] Douglas V. Hoyt,et al. A Redetermination of the Rayleigh Optical Depth and its Application to Selected Solar Radiation Problems. , 1977 .
[43] Brian Cairns,et al. Automated cloud screening algorithm for MFRSR data , 2004 .
[44] A. Stohl,et al. Pan‐Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004 , 2006 .
[45] Brian Cairns,et al. Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part I: Retrieval Algorithm , 2002 .
[46] P. Pilewskie,et al. Pinatubo and pre‐Pinatubo optical‐depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data , 1993 .
[47] R. Penndorf,et al. Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficient for the Spectral Region between 0.2 and 20.0 μ and Their Application to Atmospheric Optics , 1957 .
[48] Petr Chylek,et al. Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval , 2003 .
[49] H. Kunze,et al. On the Rayleigh scattering in air , 1978 .
[50] C. Wehrli,et al. Calibrations of filter radiometers for determination of atmospheric optical depth , 2000 .
[51] O. Boucher,et al. A satellite view of aerosols in the climate system , 2002, Nature.
[52] P. Teillet,et al. Rayleigh optical depth comparisons from various sources. , 1990, Applied optics.
[53] BouguerPierre,et al. Essai d'optique sur la gradation de la lumière , 1922, Nature.
[54] Alexandros Papayannis,et al. Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations , 2004 .
[55] M. Andreae. Raising dust in the greenhouse , 1996, Nature.
[56] B. Forgan,et al. General method for calibrating Sun photometers. , 1994, Applied optics.
[57] G. Brasseur,et al. Stratospheric chemical and thermal response to long‐term variability in solar UV irradiance , 1981 .
[58] A. Smirnov,et al. AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .
[59] J. Y. BUCHANAN,et al. Solar Radiation , 1901, Nature.
[60] J. Deluisi,et al. Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992 , 1994 .
[61] U. Lohmann,et al. Global indirect aerosol effects: a review , 2004 .
[62] R. N. Griffin,et al. Determination of extraterrestrial solar spectral irradiance from a research aircraft. , 1969, Applied optics.
[63] Nels S. Laulainen,et al. Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links programs , 2001 .
[64] B. Herman,et al. Alternate approach to the analysis of solar photometer data. , 1981, Applied optics.
[65] Alexander Smirnov,et al. Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements , 2000 .
[66] J. Michalsky,et al. Objective algorithms for the retrieval of optical depths from ground-based measurements. , 1994, Applied optics.
[67] Yoram J. Kaufman,et al. Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000 , 2004 .
[68] E. C. Flowers,et al. Atmospheric Turbidity over the United States, 1961–1966 , 1969 .
[69] Soon-Chang Yoon,et al. Global Surface-Based Sun Photometer Network for Long-Term Observations of Column Aerosol Optical Properties: Intercomparison of Aerosol Optical Depth , 2008 .
[70] J. Slusser,et al. Field comparison of network Sun photometers , 2003 .
[71] A. Drummond,et al. Extraterrestrial solar spectrum , 1973 .
[72] W. Schüepp. Die Bestimmung der Komponenten der atmosphärischen Trübung aus Aktinometermessungen , 1949 .
[73] D. Ruppert,et al. A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares , 1988 .
[74] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .
[75] J. Strutt. Scientific Papers: On the Transmission of Light through an Atmosphere containing Small Particles in Suspension, and on the Origin of the Blue of the Sky , 2009 .
[76] F. Volz,et al. Photometer mit Selen-Photoelement zur spektralen Messung der Sonnenstrahlung und zur Bestimmung der Wellenlängenabhängigkeit der Dunsttrübung , 1959 .
[77] Anders Ångström,et al. On the Atmospheric Transmission of Sun Radiation. II , 1930 .
[78] Nigel P. Fox,et al. Trap Detectors and their Properties , 1991 .
[79] R Pello,et al. Results of an international comparison of spectral responsivity of silicon photodetectors , 1995 .
[80] Alexander Ignatov,et al. The lognormal distribution as a reference for reporting aerosol optical depth statistics; Empirical tests using multi‐year, multi‐site AERONET Sunphotometer data , 2000 .
[81] Connor J. Flynn,et al. Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM Aerosol IOP 2003 , 2006 .
[82] J. Burrows,et al. ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME — 2 . TEMPERATURE-DEPENDENT ABSORPTION CROSS SECTIONS OF O 3 IN THE 231 — 794 NM RANGE , 1998 .
[83] B. Forgan,et al. Aerosol Measurement in the Australian Outback: Intercomparison of Sun Photometers , 2003 .
[84] R. Schotland,et al. Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol. , 1986, Applied optics.
[85] S. Biggar,et al. Evaluation of the Applicability of Solar and Lamp Radiometric Calibrations of a Precision Sun Photometer Operating Between 300 and 1025 nm. , 1998, Applied optics.
[86] A. Bucholtz,et al. Rayleigh-scattering calculations for the terrestrial atmosphere. , 1995, Applied optics.
[87] David D. Turner,et al. Average aerosol extinction and water vapor profiles over the Southern Great Plains , 2001 .
[88] T. Nakajima,et al. Retrieval of the optical properties of aerosols from aureole and extinction data. , 1983, Applied optics.
[89] F. E. Volz. Some results of turbidity networks , 1969 .
[90] Jean H. Meeus,et al. Astronomical Algorithms , 1991 .
[91] Y. Kaufman,et al. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data , 2006 .
[92] W. E. Knowles Middleton,et al. Pierre Bouguer's Optical Treatise on the Gradation of Light , 1961 .
[93] Edson R. Peck,et al. Dispersion of Air , 1972 .
[94] F. Linke. Vorbereitende betrachtungen : dietheorie der zerstreuung, extinktion und polarisation des lichtes in der atmosphare : die sonnenstrahlung und ihre schwachung in der atmosphare , 1941 .
[95] F. Kasten,et al. A new table and approximation formula for the relative optial air mass , 1964 .
[96] P. Valko. Vereinfachtes Auswerteverfahren für die Schüeppsche Methode zur Bestimmung der atmosphärischen Trübung , 1961 .