Parallel Wavelet Transform for Spatio-temporal Outlier Detection in Large Meteorological Data

This paper describes a state-of-the-art parallel data mining solution that employs wavelet analysis for scalable outlier detection in large complex spatio-temporal data. The algorithm has been implemented on multiprocessor architecture and evaluated on real-world meteorological data. Our solution on high-performance architecture can process massive and complex spatial data at reasonable time and yields improved prediction.