CO-LOCATED EQUAL-ORDER CONTROL-VOLUME FINITE-ELEMENT METHOD FOR MULTIDIMENSIONAL, INCOMPRESSIBLE, FLUID FLOW—PART II: VERIFICATION

A co-located equal-order control-volume-based finite-element method (CVFEW) for two- and three-dimensional, incompressible, viscous fluid flow is presented. The method works directly with the primitive variables. Triangular elements and polygonal control volumes, and tetrahedral elements and polyhedral control volumes are used to discretize the calculation domains in two- and three-dimensional problems, respectively. Two available flow-oriented upwind schemes (FLO and FLOS) and a novel mass-weighted skew upwind scheme (MAW) are investigated. In each dement, the velocity components in the mass flux terms are interpolated by special functions that prevent the generation of spurious pressure oscillations. The discretized equations are solved using an iterative sequential variable adjustment algorithm. Verification of the proposed CVFEM is presented in a companion article.

[1]  Gerry E. Schneider,et al.  A SKEWED, POSITIVE INFLUENCE COEFFICIENT UPWINDING PROCEDURE FOR CONTROL-VOLUME-BASED FINITE-ELEMENT CONVECTION-DIFFUSION COMPUTATION , 1986 .

[2]  B. R. Baliga,et al.  EVALUATION AND ENHANCEMENTS OF SOME CONTROL VOLUME FINITE-ELEMENT METHODS—PART 1. CONVECTION-DIFFUSION PROBLEMS , 1988 .

[3]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[4]  R. J. Schnipke,et al.  An equal-order velocity-pressure formulation that does not exhibit spurious pressure modes , 1986 .

[5]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[6]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[7]  T. J. Barth,et al.  On unstructured grids and solvers , 1990 .

[8]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[9]  G. D. Raithby,et al.  A method for computing three dimensional flows using non‐orthogonal boundary‐fitted co‐ordinates , 1984 .

[10]  A. Jameson,et al.  Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh , 1985 .

[11]  B. R. Baliga,et al.  A CONTROL VOLUME FINITE-ELEMENT METHOD FOR TWO-DIMENSIONAL FLUID FLOW AND HEAT TRANSFER , 1983 .

[12]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[13]  George D. Raithby,et al.  PREDICTION OF HEAT AND FLUID FLOW IN COMPLEX GEOMETRIES USING GENERAL ORTHOGONAL COORDINATES , 1986 .

[14]  Yassin A. Hassan,et al.  a Stable Mass-Flow Two-Dimensional Skew Upwind Scheme , 1983 .

[15]  G. D. Raithby,et al.  Skew upstream differencing schemes for problems involving fluid flow , 1976 .

[16]  F. Moukalled,et al.  An adaptive grid solution procedure for convection-diffusion problems , 1990 .

[17]  R. Kessler,et al.  Comparison of finite-volume numerical methods with staggered and colocated grids , 1988 .

[18]  Helmut John Saabas A control volume finite element method for three-dimensional, incompressible, viscous fluid flow , 1991 .

[19]  B. R. Baliga,et al.  Evaluation and Enhancements of Some Control Volume Finite-Element Methods - Part 2. Incompressible Fluid Flow Problems , 1988 .

[20]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[21]  J. Z. Zhu,et al.  The finite element method , 1977 .

[22]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[23]  C. Prakash,et al.  AN IMPROVED CONTROL VOLUME FINITE-ELEMENT METHOD IFOR HEAT AND MASS TRANSFER, AND FOR FLUID FLOW USING EQUAL-ORDER VELOCITY-PRESSURE INTERPOLATION , 1986 .

[24]  Yassin A. Hassan,et al.  A Stable Mass-Flow-Weighted Two-Dimensional Skew Upwind Scheme , 1983 .

[25]  J. Altenbach Zienkiewicz, O. C., The Finite Element Method. 3. Edition. London. McGraw‐Hill Book Company (UK) Limited. 1977. XV, 787 S. , 1980 .

[26]  B. R. Baliga,et al.  A NEW FINITE-ELEMENT FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS , 1980 .

[27]  Stephen F. McCormick,et al.  Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.

[28]  R. A. Nicolaides,et al.  Discretization of incompressible vorticity–velocity equations on triangular meshes , 1990 .

[29]  R. Webster An algebraic multigrid solver for Navier‐Stokes problems , 1994 .

[30]  Andreas Lahrmann,et al.  An element formulation for the classical finite difference and finite volume method applied to arbitrarily shaped domains , 1992 .

[31]  B. R. Baliga A control-volume based finite element method for convective heat and mass transfer , 1978 .

[32]  J. P. V. Doormaal,et al.  ENHANCEMENTS OF THE SIMPLE METHOD FOR PREDICTING INCOMPRESSIBLE FLUID FLOWS , 1984 .

[33]  B. Finlayson The method of weighted residuals and variational principles : with application in fluid mechanics, heat and mass transfer , 1972 .

[34]  Gerry E. Schneider,et al.  Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Colocated Variables— 1. Computational Procedure , 1987 .

[35]  J. Oden Finite-Element Analogue of Navier-Stokes Equation , 1970 .

[36]  Joe F. Thompson,et al.  Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies , 1974 .

[37]  Vaughan R Voller,et al.  STREAMLINE UPWIND SCHEME FOR CONTROL-VOLUME FINITE ELEMENTS, PART I. FORMULATIONS , 1992 .

[38]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[39]  Suhas V. Patankar,et al.  A CONTROL VOLUME-BASED FINITE-ELEMENT METHOD FOR SOLVING THE NAVIER-STOKES EQUATIONS USING EQUAL-ORDER VELOCITY-PRESSURE INTERPOLATION , 1984 .

[40]  B. Rabi Baliga,et al.  SOLUTION OF THREE-DIMENSIONAL CONVECTION-DIFFUSION PROBLEMS USING TETRAHEDRAL ELEMENTS AND FLOW-ORIENTED UPWIND INTERPOLATION FUNCTIONS , 1986 .

[41]  Wei Shyy,et al.  On the adoption of velocity variable and grid system for fluid flow computation in curvilinear coordinates , 1990 .

[42]  J. Ramos Finite element methods for one‐dimensional combustion problems , 1990 .

[43]  David L. Williamson,et al.  NUMERICAL INTEGRATION OF FLUID FLOW OVER TRIANGULAR GRIDS , 1969 .

[44]  Khalid Aziz,et al.  A Generalization of the Additive Correction Methods for the Iterative Solution of Matrix Equations , 1973 .

[45]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .