Evaluation of the high temperature performance of HfB2 UHTC particulate filled Cf/C composites

Room and high temperature flexural strength and coefficient of thermal expansion (CTE) of HfB2 ultra-high temperature ceramic (UHTC) particulate filled Cf/C composites are determined along with UHT oxidation behavior. Both room and high temperature strength of the composites were found to be broadly comparable to those of other thermal protection system materials currently being investigated. The CTE of the composites was measured both along and perpendicular to the fiber direction up to 1700°C and the values were found to depend on fiber orientation by approximately a factor of 3. Arc-jet testing of the UHTC composites highlighted the excellent ultra-high temperature oxidation performance of these materials.

[1]  Bala Vaidhyanathan,et al.  UHTC composites for hypersonic applications , 2014 .

[2]  C. Leslie,et al.  Development of Continuous SiC Fiber Reinforced HfB2‐SiC Composites for Aerospace Applications , 2013 .

[3]  J. Binner,et al.  Oxyacetylene torch testing and microstructural characterization of tantalum carbide , 2013, Journal of microscopy.

[4]  D. Sciti,et al.  Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics , 2013 .

[5]  J. Binner,et al.  UHTC–carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation , 2013 .

[6]  Song Wang,et al.  Preparation of carbon fiber-reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature , 2012 .

[7]  S. Dong,et al.  Fabrication and Properties of 3‐D Cf/SiC–ZrC Composites, Using ZrC Precursor and Polycarbosilane , 2012 .

[8]  H. Hu,et al.  Preparation and characterization of three-dimensional carbon fiber reinforced zirconium carbide composite by precursor infiltration and pyrolysis process , 2011 .

[9]  H. Hu,et al.  Ablation behavior and mechanism of 3D C/ZrC composite in oxyacetylene torch environment , 2011 .

[10]  Lai-fei Cheng,et al.  Preparation and properties of 2D C/SiC–ZrB2–TaC composites , 2011 .

[11]  William E Lee,et al.  Reactive infiltration processing (RIP) of ultra high temperature ceramics (UHTC) into porous C/C composite tubes , 2011 .

[12]  D. Sciti,et al.  Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions , 2010 .

[13]  J. Zaykoski,et al.  Synthesis, Processing, and Properties of TaC-TaB2-C Ceramics , 2010 .

[14]  H. Hu,et al.  Preparation and characterization of C/SiC–ZrB2 composites by precursor infiltration and pyrolysis process , 2010 .

[15]  Jenn‐Ming Yang,et al.  Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration , 2010 .

[16]  Lai-fei Cheng,et al.  Preparation and properties of 2D C/ZrB2-SiC ultra high temperature ceramic composites , 2009 .

[17]  K. Ray,et al.  New route to process uni-directional carbon fiber reinforced (SiC + ZrB2) matrix mini-composites , 2009 .

[18]  Jiecai Han,et al.  Characterization of hot-pressed short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic composites , 2009 .

[19]  Jiecai Han,et al.  Processing and characterization of ZrB2–SiCW ultra-high temperature ceramics , 2009 .

[20]  G. Ice,et al.  Probing strains and dislocation gradients with diffraction , 2009 .

[21]  Jiecai Han,et al.  Spark plasma sintering and hot pressing of ZrB2–SiCW ultra-high temperature ceramics , 2008 .

[22]  王震,et al.  Fabrication and Properties of C-f/SiC-ZrC Composites , 2008 .

[23]  A. Bellosi,et al.  Processing and properties of ultra-high temperature ceramics for space applications , 2008 .

[24]  Jiecai Han,et al.  Ablation behavior of ZrB2-SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions , 2008 .

[25]  Jiecai Han,et al.  Fabrication and mechanical properties of ZrB2–SiCw ceramic matrix composite , 2008 .

[26]  Jiecai Han,et al.  Oxidation-resistant ZrB2-SiC composites at 2200 °C , 2008 .

[27]  Raffaele Savino,et al.  Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials , 2008 .

[28]  Ke Yang,et al.  Ablation behaviors of ultra-high temperature ceramic composites , 2007 .

[29]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[30]  E. Opila,et al.  UHTCs: Ultra-High Temperature Ceramic Materials for Extreme Environment Applications , 2007 .

[31]  Donald M. Curry,et al.  Oxidation microstructure studies of reinforced carbon/carbon , 2006 .

[32]  Raffaele Savino,et al.  Aerothermodynamic study of UHTC-based thermal protection systems , 2005 .

[33]  N. Bansal Handbook of Ceramic Composites , 2005 .

[34]  Sylvia M. Johnson,et al.  Ultra High Temperature Ceramic Composites , 2005 .

[35]  Donald T. Ellerby,et al.  Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics , 2004 .

[36]  A. Sayir Carbon fiber reinforced hafnium carbide composite , 2004 .

[37]  J. Zaykoski,et al.  Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience , 2004 .

[38]  Donald T. Ellerby,et al.  Characterization of Zirconium Diboride for Thermal Protection Systems , 2004 .

[39]  E. Opila,et al.  Characterization of an Ultra-High Temperature Ceramic Composite , 2004 .

[40]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[41]  R. Rawlings,et al.  Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation. , 2000 .

[42]  M. Patterson Oxidation Resitant HfC-TaC Rocket Thruster for High Performance Propellants , 1999 .

[43]  B. Reed,et al.  Advanced HfC-TaC Oxidation Resistant Composite Rocket Thruster , 1996 .

[44]  R. Rapp,et al.  Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium , 1991 .

[45]  D. C. Phillips,et al.  Carbon fibre composites with ceramic and glass matrices , 1972 .

[46]  N. M. Tallan,et al.  The Svstern Zirconia‐Hafnia , 1968 .

[47]  HAL REL©RT,et al.  OXIDATION RESISTANT HfC-TaC ROCKET THRUSTER FOR HIGH PERFORMANCE PROPELLANTS , 2022 .