Mapping the Arnold web with a graphic processing unit.

The Arnold diffusion constitutes a dynamical phenomenon which may occur in the phase space of a non-integrable Hamiltonian system whenever the number of the system degrees of freedom is M ≥ 3. The diffusion is mediated by a web-like structure of resonance channels, which penetrates the phase space and allows the system to explore the whole energy shell. The Arnold diffusion is a slow process; consequently, the mapping of the web presents a very time-consuming task. We demonstrate that the exploration of the Arnold web by use of a graphic processing unit-supercomputer can result in distinct speedups of two orders of magnitude as compared with standard CPU-based simulations.

[1]  E. W. Herold,et al.  Controlled fusion , 1959, IRE Transactions on Electron Devices.

[2]  M. Januszewski,et al.  Accelerating numerical solution of stochastic differential equations with CUDA , 2009, Comput. Phys. Commun..

[3]  G. Benettin,et al.  Boltzmann's ultraviolet cutoff and Nekhoroshev's theorem on Arnold diffusion , 1984, Nature.

[4]  BRAGG SPECTROSCOPY OF A BOSE-EINSTEIN CONDENSATE , 1999, cond-mat/9901109.

[5]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[6]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  Diercksen,et al.  Computation of the Arnol'd web for the hydrogen atom in crossed electric and magnetic fields. , 1996, Physical review letters.

[8]  Naga K. Govindaraju,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007 .

[9]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[10]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[11]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[12]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[13]  Alessandro Morbidelli,et al.  Modern celestial mechanics : aspects of solar system dynamics , 2002 .

[14]  M. Weitz,et al.  Directed Transport of Atoms in a Hamiltonian Quantum Ratchet , 2009, Science.

[15]  V. V. Vecheslavov,et al.  Arnold diffusion in large systems , 1997 .

[16]  Dumas,et al.  Global dynamics and long-time stability in Hamiltonian systems via numerical frequency analysis. , 1993, Physical review letters.

[17]  P. Hänggi,et al.  Negative mobility induced by colored thermal fluctuations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[19]  H. Wobig,et al.  On guiding centre orbits of particles in toroidal systems , 2001 .

[20]  Jorge Kurchan,et al.  Probing rare physical trajectories with Lyapunov weighted dynamics , 2007 .

[21]  P. Hänggi,et al.  Perturbation spreading in many-particle systems: a random walk approach. , 2011, Physical review letters.

[22]  Mason A. Porter,et al.  Fermi, Pasta, Ulam and the Birth of Experimental Mathematics , 2009 .

[23]  George Contopoulos,et al.  Order and Chaos in Dynamical Astronomy , 2002 .

[24]  Hailin Wang,et al.  Directional tunneling escape from nearly spherical optical resonators. , 2003, Physical review letters.

[25]  A. Lichtenberg Arnold diffusion in a torus with time‐varying fields , 1992 .

[26]  Froeschle,et al.  Graphical evolution of the arnold web: from order to chaos , 2000, Science.

[27]  Wood,et al.  Arnold diffusion in weakly coupled standard maps. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[28]  K. Ohmi,et al.  Chaos and emittance growth due to nonlinear interactions in a circular accelerator , 2007 .

[29]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[30]  高橋 陽一郎 名著発掘 「Statistical Independence in Probability,Analysis and Number Theory--The Carus Mathematical Monographs,Number 12,The Mathematical Association of America」Marc Kac--Marc Kacの珠玉の1冊 , 2001 .

[31]  M. Kac,et al.  Statistical Independence in Probability, Analysis and Number Theory. , 1960 .