Human Tracking in Non-cooperative Scenarios

In this chapter we discuss human tracking problems for biometric applications in non-cooperative scenarios. The chapter starts with an overview of modern biometric authentication systems. Special attention is paid to vision system construction and its design fundamentals. Next the existing image segmentation methods are presented with emphasis on procedures suitable for image pre-segmentation during the acquisition process. The chapter ends with some sample processing architectures presentation.

[1]  Keith J. Hanna,et al.  A System for Non-Intrusive Human Iris Acquisition and Identification , 1996, MVA.

[2]  N Kollias,et al.  Absorption mechanisms of human melanin in the visible, 400-720 nm. , 1987, The Journal of investigative dermatology.

[3]  Yoshiki Nakamura,et al.  International commission on illumination , 1928, Journal of the A.I.E.E..

[4]  Liyanage C. De Silva,et al.  Multimodal Approach to Human-Face Detection and Tracking , 2008, IEEE Transactions on Industrial Electronics.

[5]  Ramakant Nevatia,et al.  Combined face-body tracking in indoor environment , 2004, ICPR 2004.

[6]  Andrzej Napieralski,et al.  Hardware Architecture Optimized for Iris Recognition , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[7]  R. Narayanswamy,et al.  Extending the imaging volume for biometric iris recognition. , 2005, Applied optics.

[8]  Marc Friedman,et al.  Video Surveillance for Biometrics: Long-Range Multi-biometric System , 2008, 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance.

[9]  Mariusz Zubert,et al.  Optimization of iris image segmentation algorithm for real time applications , 2009, 2009 MIXDES-16th International Conference Mixed Design of Integrated Circuits & Systems.

[10]  Hironobu Fujiyoshi,et al.  Moving target classification and tracking from real-time video , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[11]  Marios Savvides,et al.  Unconstrained Iris Acquisition and Recognition Using COTS PTZ Camera , 2010, EURASIP J. Adv. Signal Process..

[12]  Zhengyou Zhang,et al.  A Survey of Recent Advances in Face Detection , 2010 .

[13]  Ho Gi Jung,et al.  Non-intrusive Iris Image Capturing System Using Light Stripe Projection and Pan-Tilt-Zoom Camera , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Tieniu Tan,et al.  A Design of Iris Recognition System at a Distance , 2009, 2009 Chinese Conference on Pattern Recognition.

[15]  Zhengyou Zhang,et al.  Flexible camera calibration by viewing a plane from unknown orientations , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[16]  Dmitry B. Goldgof,et al.  Understanding Transit Scenes: A Survey on Human Behavior-Recognition Algorithms , 2010, IEEE Transactions on Intelligent Transportation Systems.

[17]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[18]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[19]  Mariusz Zubert,et al.  Reliable algorithm for iris segmentation in eye image , 2010, Image Vis. Comput..

[20]  Z. Zivkovic Improved adaptive Gaussian mixture model for background subtraction , 2004, ICPR 2004.

[21]  James R. Matey,et al.  Iris on the Move: Acquisition of Images for Iris Recognition in Less Constrained Environments , 2006, Proceedings of the IEEE.

[22]  Ferdinand van der Heijden,et al.  Efficient adaptive density estimation per image pixel for the task of background subtraction , 2006, Pattern Recognit. Lett..

[23]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[24]  Larry S. Davis,et al.  Probabilistic framework for segmenting people under occlusion , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Stephen J. Maybank,et al.  Fusion of Multiple Tracking Algorithms for Robust People Tracking , 2002, ECCV.

[26]  Ramakant Nevatia,et al.  Segmentation and Tracking of Multiple Humans in Crowded Environments , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jean-Marc Odobez,et al.  Tracking People in Meetings with Particles , 2005 .

[28]  Guodong Guo,et al.  A System for Automatic Iris Capturing , 2005 .

[29]  Lu Wang,et al.  Three-Dimensional Model-Based Human Detection in Crowded Scenes , 2012, IEEE Transactions on Intelligent Transportation Systems.

[30]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[32]  Marios Savvides,et al.  Unconstrained periocular biometric acquisition and recognition using COTS PTZ camera for uncooperative and non-cooperative subjects , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[33]  Genshe Chen,et al.  A non-cooperative long-range biometric system for maritime surveillance , 2008, 2008 19th International Conference on Pattern Recognition.

[34]  Ramakant Nevatia,et al.  Tracking multiple humans in complex situations , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[37]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2005, International Journal of Computer Vision.

[38]  F.W. Wheeler,et al.  Stand-off Iris Recognition System , 2008, 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems.

[39]  Oleg Seredin,et al.  Comparative Testing of Face Detection Algorithms , 2010, ICISP.

[40]  Marios Savvides,et al.  Long range iris acquisition system for stationary and mobile subjects , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[41]  Michael Isard,et al.  Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion , 2000 .

[42]  K. Grabowski Control and Illumination system for eye image acquisition stand , 2007 .

[43]  J. Forrester,et al.  The Eye: Basic Sciences in Practice , 2002 .

[44]  Rómer Rosales,et al.  3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[45]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  David Gerónimo Gómez,et al.  Survey of Pedestrian Detection for Advanced Driver Assistance Systems , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.