Edinburgh Research Explorer Non-backtracking PageRank

The PageRank algorithm, which has been “bringing order to the web” for more than twenty years, computes the steady state of a classical random walk plus teleporting. Here we consider a variation of PageRank that uses a non-backtracking random walk. To do this, we first reformulate PageR-ank in terms of the associated line graph. A non-backtracking analog then emerges naturally. Comparing the resulting steady states, we find that, even for undirected graphs, non-backtracking generally leads to a different ranking of the nodes. We then focus on computational issues, deriving an explicit representation of the new algorithm that can exploit structure and sparsity in the underlying network. Finally, we assess effectiveness and efficiency of this approach on some real-world networks.

[1]  Tina Eliassi-Rad,et al.  Graph Distance from the Topological View of Non-backtracking Cycles , 2018, ArXiv.

[2]  Peter Grindrod,et al.  The Deformed Graph Laplacian and Its Applications to Network Centrality Analysis , 2018, SIAM J. Matrix Anal. Appl..

[3]  Peter Grindrod,et al.  Non-backtracking walk centrality for directed networks , 2018, J. Complex Networks.

[4]  Mark Kempton Non-backtracking random walks and a weighted Ihara's theorem , 2016, 1603.05553.

[5]  Hernán A. Makse,et al.  Influence maximization in complex networks through optimal percolation , 2015, Nature.

[6]  Tatsuro Kawamoto,et al.  Localized eigenvectors of the non-backtracking matrix , 2015, 1505.07543.

[7]  Romualdo Pastor-Satorras,et al.  Distinct types of eigenvector localization in networks , 2015, Scientific Reports.

[8]  D. Gleich PageRank beyond the Web , 2014, SIAM Rev..

[9]  Florent Krzakala,et al.  Spectral Clustering of graphs with the Bethe Hessian , 2014, NIPS.

[10]  Xiao Zhang,et al.  Localization and centrality in networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Elchanan Mossel,et al.  Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.

[12]  Robert Shorten,et al.  Traffic modelling framework for electric vehicles , 2012, Int. J. Control.

[13]  Robert Shorten,et al.  A Google-like model of road network dynamics and its application to regulation and control , 2011, Int. J. Control.

[14]  Kenji Fukumizu,et al.  Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation , 2009, NIPS.

[15]  Andrei Tarfulea,et al.  An Ihara formula for partially directed graphs , 2009 .

[16]  David F. Gleich,et al.  Random Alpha PageRank , 2009, Internet Math..

[17]  Ilse C. F. Ipsen,et al.  Ordinal Ranking for Google's PageRank , 2008, SIAM J. Matrix Anal. Appl..

[18]  J. Friedman,et al.  THE NON-BACKTRACKING SPECTRUM OF THE UNIVERSAL COVER OF A GRAPH , 2007, 0712.0192.

[19]  M. Horton Ihara zeta functions of digraphs , 2007 .

[20]  Uzy Smilansky,et al.  Quantum chaos on discrete graphs , 2007, 0704.3525.

[21]  N. Alon,et al.  Non-backtracking random walks mix faster , 2006, math/0610550.

[22]  V. Latora,et al.  Centrality in networks of urban streets. , 2006, Chaos.

[23]  Ilse C. F. Ipsen,et al.  Convergence Analysis of a PageRank Updating Algorithm by Langville and Meyer , 2005, SIAM J. Matrix Anal. Appl..

[24]  Antonio Gullì,et al.  Fast PageRank Computation via a Sparse Linear System , 2005, Internet Math..

[25]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[26]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[27]  A. Terras,et al.  Zeta Functions of Finite Graphs and Coverings , 1996 .

[28]  Charles R. Johnson,et al.  Matrix analysis , 1985 .

[29]  Audry Terras What are zeta functions of graphs and what are they good for ? , 2005 .