Three-dimensional sampling of material structure for property modeling and design

Newly developed 3-D tomographic techniques permit acquisition of quantitative materials data for input to structure-property models. At the mesoscale, techniques that enable sampling of larger material volumes provide information such as grain size and morphology, 3-D interfacial character, and chemical gradients. However, systematic approaches for determining the characteristic material volume for 3-D analysis have yet to be established. In this work, the variability in properties due to microstructure is discussed in the context of a methodology for defining volume elements that link microstructure, properties, and design. As such, we propose a 3-D sampling methodology based on convergence of microstructural parameters and associated properties and design considerations.

[1]  Mark D. Semon,et al.  POSTUSE REVIEW: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1982 .

[2]  McLean P. Echlin,et al.  Three-dimensional characterization of the permeability of W-Cu composites using a new "TriBeam" technique , 2014 .

[3]  J. M. Larsen,et al.  A new paradigm of fatigue variability behavior and implications for life prediction , 2007 .

[4]  D. McDowell,et al.  Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100 , 2010 .

[5]  M. Echlin,et al.  A statistical sampling approach for measurement of fracture toughness parameters in a 4330 steel by 3-D femtosecond laser-based tomography , 2013 .

[6]  P. Midgley,et al.  3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. , 2003, Ultramicroscopy.

[7]  P. Ramm,et al.  Bonding and TSV in 3 D IC Integration : Physical Analysis with a Plasma FIB , 2011 .

[8]  Brian Puchala,et al.  Collecting and analyzing microstructures in three dimensions: A fully automated approach , 2003 .

[9]  Jens Beyersdorfer Cross Section Analysis of Cu filled TSVs based on High Throughput Plasma-FIB Milling , 2012 .

[10]  D. Dimiduk,et al.  3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM , 2006 .

[11]  D. McDowell A perspective on trends in multiscale plasticity , 2010 .

[12]  Somnath Ghosh,et al.  Developing a robust 3-D characterization-representation framework for modeling polycrystalline materials , 2007 .

[13]  Harm Askes,et al.  Representative volume: Existence and size determination , 2007 .

[14]  Y. Monerie,et al.  Determination of the size of the representative volume element for random quasi-brittle composites , 2009 .

[15]  M. Groeber,et al.  An Automated Multi-Modal Serial Sectioning System for Characterization of Grain-Scale Microstructures in Engineering Materials , 2012 .

[16]  Jeff Simmons,et al.  Three-dimensional analysis of secondary γ′ precipitates in René-88 DT and UMF-20 superalloys , 2009 .

[17]  Wing Kam Liu,et al.  Multi-length scale micromorphic process zone model , 2009 .

[18]  D. McDowell,et al.  Microstructure-sensitive extreme-value probabilities of high-cycle fatigue for surface vs. subsurface crack formation in duplex Ti–6Al–4V , 2012 .

[19]  F. Berto,et al.  Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-notches , 2005 .

[20]  Somnath Ghosh,et al.  3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system , 2006 .

[21]  E. R. Cohen An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , 1998 .

[22]  A. Gokhale,et al.  Representative volume element for non-uniform micro-structure , 2002 .

[23]  S. Kalidindi,et al.  Estimating the response of polycrystalline materials using sets of weighted statistical volume elements , 2012 .

[24]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[25]  G. Spanos,et al.  Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy , 2010 .

[26]  P. Voorhees,et al.  Quantitative serial sectioning analysis , 2001, Journal of microscopy.

[27]  T. Pollock,et al.  The three-dimensional reconstruction of the dendritic structure at the solid-liquid interface of a Ni-based single crystal , 2008 .

[28]  N. J. Pagano,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I - Without Damage , 2006 .

[29]  D. Rowenhorst,et al.  Particle coarsening in high volume fraction solid-liquid mixtures , 2006 .

[30]  M. Echlin,et al.  A new TriBeam system for three-dimensional multimodal materials analysis. , 2012, The Review of scientific instruments.

[31]  Robert M. Suter,et al.  Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: Single-crystal verification , 2006 .

[32]  David L. McDowell,et al.  Representation and computational structure-property relations of random media , 2011 .

[33]  D. Fullwood,et al.  Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .

[34]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation , 2008 .

[35]  H. Poulsen,et al.  The three dimensional X-ray diffraction technique , 2012 .

[36]  B Münch,et al.  Three‐dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography , 2004, Journal of microscopy.

[37]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[38]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[39]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[40]  T. Pollock,et al.  Processing to Fatigue Properties: Benefits of High Gradient Casting for Single Crystal Airfoils , 2012 .

[41]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. , 2008 .

[42]  Dominique Jeulin,et al.  Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .

[43]  E. Landis,et al.  X-ray microtomography , 2010 .

[44]  Peter W Voorhees,et al.  Measurement of Interfacial Evolution in Three Dimensions , 2012 .