The processing of enriched germanium for the Majorana Demonstrator and R&D for a next generation double-beta decay experiment

Abstract The Majorana Demonstrator  is an array of point-contact Ge detectors fabricated from Ge isotopically enriched to 88% in 76 Ge  to search for neutrinoless double beta decay. The processing of Ge for germanium detectors is a well-known technology. However, because of the high cost of Ge enriched in 76 Ge special procedures were required to maximize the yield of detector mass and to minimize exposure to cosmic rays. These procedures include careful accounting for the material; shielding it to reduce cosmogenic generation of radioactive isotopes; and development of special reprocessing techniques for contaminated solid germanium, shavings, grindings, acid etchant and cutting fluids from detector fabrication. Processing procedures were developed that resulted in a total yield in detector mass of 70%. However, none of the acid-etch solution and only 50% of the cutting fluids from detector fabrication were reprocessed. Had they been processed, the projections for the recovery yield would be between 80% and 85%. Maximizing yield is critical to justify a possible future ton-scale experiment. A process for recovery of germanium from the acid-etch solution was developed with yield of about 90%. All material was shielded or stored underground whenever possible to minimize the formation of  68 Ge by cosmic rays, which contributes background in the double-beta decay region of interest and cannot be removed by zone refinement and crystal growth. Formation of  68 Ge was reduced by a significant factor over that in natural abundance detectors not protected from cosmic rays.

F. E. Bertrand | C. D. Christofferson | J. F. Wilkerson | I. J. Arnquist | S. J. Meijer | M. Shirchenko | I. Zhitnikov | B. X. Zhu | M. Buuck | Yu. Efremenko | M. Caja | R.G.H. Robertson | A. S. Barabash | B. Shanks | A. L. Reine | N. Abgrall | A. W. Bradley | M. Busch | T. S. Caldwell | P.-H. Chu | J. A. Detwiler | C. Dunagan | T. Gilliss | G. K. Giovanetti | J. Gruszko | I. S. Guinn | V. E. Guiseppe | R. Henning | E. W. Hoppe | M. F. Kidd | R. T. Kouzes | S. Mertens | J. Rager | K. Rielage | J. E. Trimble | R. L. Varner | S. Vasilyev | K. Vorren | C. Wiseman | C.-H. Yu | V. Yumatov | F. T. Avignone | R. Massarczyk | H. Ejiri | V. Brudanin | C. Cuesta | S. I. Konovalov | D. C. Radford | A. M. Suriano | D. Tedeschi | E. Yakushev | J. H. Meyer | K. Vetter | J. Meyer | R. Kouzes | J. Wilkerson | R. Robertson | K. Rielage | A. Poon | B. White | F. Avignone | N. Abgrall | J. Myslik | J. Goett | V. Brudanin | C. O'Shaughnessy | M. Shirchenko | I. Zhitnikov | S. Konovalov | J. Detwiler | R. Martin | S. Mertens | D. Radford | D. Tedeschi | S. Vasilyev | C. Cuesta | E. Hoppe | G. Giovanetti | C. Christofferson | C. Haufe | I. Arnquist | E. Yakushev | A. Barabash | H. Ejiri | S. R. Elliott | J. Goett | M. P. Green | B. R. Jasinski | J. MacMullin | R. D. Martin | A.W.P. Poon | K. Vetter | B. R. White | W. Xu | C. O'Shaughnessy | V. Yumatov | B. Zhu | R. Massarczyk | M. Buuck | F. Bertrand | M. Busch | Y. Efremenko | M. Green | J. Gruszko | V. Guiseppe | R. Henning | M. Kidd | B. Shanks | A. Suriano | R. Varner | K. Vorren | W. Xu | J. Reising | A. M. Lopez | J. Myslik | C. Wiseman | C. Yu | J. Caja | D. T. Dunstan | C.R.S. Haufe | J. A. Reising | L. M. Toth | T. Caldwell | I. Guinn | B. Jasinski | J. MacMullin | S. Meijer | J. Rager | J. Trimble | A. Bradley | T. Gilliss | P. Chu | A. Reine | C. Dunagan | S. Elliott | J. Caja | M. Caja | D. Dunstan | L. Toth | C. Yu | C.-H. Yu | M. Green

[1]  C. Mariani Review of Reactor Neutrino Oscillation Experiments , 2012, 1201.6665.

[2]  N. Madden,et al.  Low capacitance large volume shaped-field germanium detector , 1989 .

[3]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[4]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[5]  D. R. Artusa,et al.  Results from a search for the 0 ν ββ-decay of 130 Te , 2008, 0802.3439.

[6]  M. Weber,et al.  Search for Majorana neutrinos with the first two years of EXO-200 data , 2014, Nature.

[7]  A. Barabash Double Beta Decay: Historical Review of 75 Years of Research , 2011, 1104.2714.

[8]  B. H. LaRoque,et al.  Fast-neutron activation of long-lived isotopes in enriched Ge , 2009, 0912.3748.

[9]  C. -. Yu,et al.  New Limits on Bosonic Dark Matter, Solar Axions, Pauli Exclusion Principle Violation, and Electron Decay from the Majorana Demonstrator. , 2016, Physical review letters.

[10]  J. C. Loach,et al.  The Majorana Demonstrator Neutrinoless Double-Beta Decay Experiment , 2012 .

[11]  M. Misiaszek,et al.  Background-free search for neutrinoless double-β decay of 76Ge with GERDA , 2017, Nature.

[12]  A. Giachero,et al.  Searching for Neutrinoless Double-Beta Decay of130Te with CUORE , 2014, 1402.6072.

[13]  D. Palioselitis Results on neutrinoless double beta decay of 76Ge from the GERDA experiment , 2015 .

[14]  Latest results from the HEIDELBERG-MOSCOW double beta decay experiment , 2001, hep-ph/0103062.

[15]  K. Vetter,et al.  New limits on bosonic dark matter, solar axions, Pauli Exclusion Principle violation, and electron decay from the low-energy spectrum of the MAJORANA DEMONSTRATOR , 2016 .

[16]  Revised alpha4 term of lepton g-2 from the Feynman diagrams containing an internal light-by-light scattering subdiagram. , 2002, Physical review letters.

[17]  Measurement of neutrino oscillation by the K2K experiment , 2006, hep-ex/0606032.

[18]  I. G. Park,et al.  Observation of reactor electron antineutrinos disappearance in the RENO experiment. , 2012, Physical review letters.

[19]  EVIDENCE FOR NEUTRINOLESS DOUBLE BETA DECAY , 2001, hep-ph/0201231.

[20]  J. Redondo Solar axion flux from the axion-electron coupling , 2013, 1310.0823.

[21]  D. Budjáš,et al.  Production, characterization and operation of $$^{76}$$76Ge enriched BEGe detectors in GERDA , 2014, 1410.0853.

[22]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[23]  W. K. Hensley,et al.  The IGEX Ge-76 neutrinoless double beta decay experiment: Prospects for next generation experiments , 2002, hep-ex/0202026.

[24]  A. Pullia,et al.  A search for lepton non-conservation in double beta decay with a germanium detector , 1967 .

[25]  W. G. Pfann Zone Melting , 1962, Science.

[26]  The IGEX experiment reexamined: a response to the critique of Klapdor-Kleingrothaus, Dietz, and Krivosheina , 2004, nucl-ex/0404036.

[27]  Data acquisition and analysis of the 76Ge double beta experiment in Gran Sasso 1990–2003 , 2004, hep-ph/0403018.

[28]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[29]  J. Bahcall Solar models: An historical overview , 2002, astro-ph/0209080.

[30]  J. I. Crespo-Anadón,et al.  Indication of reactor ν(e) disappearance in the Double Chooz experiment. , 2012, Physical review letters.

[31]  T. Kajita Atmospheric neutrinos and discovery of neutrino oscillations , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  Donald P. Geesaman Reaching for the Horizon: The Nuclear Science Advisory Committee 2015 Long Range Plan for Nuclear Science , 2016 .

[34]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[35]  W. K. Hensley,et al.  Neutrinoless double-{beta} decay of {sup 76}Ge: First results from the International Germanium Experiment (IGEX) with six isotopically enriched detectors , 1999 .

[36]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[37]  S. Belogurov,et al.  Cosmogenic activation of germanium and its reduction for low background experiments , 2005, nucl-ex/0511049.

[38]  E. G. Myers,et al.  Double-β-decay Q values of 74Se and 76Ge , 2010 .

[39]  I. Adachi,et al.  Improved measurements of branching fractions and CP partial rate asymmetries for B-->omegaK and B-->omegapi , 2006 .

[40]  Search for neutrinoless double beta decay with enriched 76Ge in Gran Sasso 1990–2003 , 2004, hep-ph/0404088.

[41]  Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics , 2007, nucl-ex/0701012.

[42]  Frank T. Avignone,et al.  Double Beta Decay, Majorana Neutrinos, and Neutrino Mass , 2007, 0708.1033.

[43]  D. Budjáš,et al.  Results on neutrinoless double-β decay of 76Ge from phase I of the GERDA experiment. , 2013, Physical review letters.

[44]  Roger Lecomte,et al.  Radiation detection measurements with a new “Buried Junction” silicon avalanche photodiode , 1999 .

[45]  D. Ovsienko,et al.  Crystal Growth from the Melt , 1980 .

[46]  W. K. Hensley,et al.  New techniques and results in 76Ge double-beta decay , 1992 .

[47]  Andrea Giuliani,et al.  Neutrinoless Double-Beta Decay , 2012 .

[48]  Eleonora Di Valentino,et al.  Global constraints on absolute neutrino masses and their ordering , 2017, 1703.04471.

[49]  Steven R. Elliott,et al.  Double Beta Decay , 2011, 1110.6159.

[50]  K M Heeger,et al.  Search for Neutrinoless Double-Beta Decay of (130)Te with CUORE-0. , 2015, Physical review letters.