The method of mothers for non-overlapping non-matching DDM

In this paper we introduce a variant of the three-field formulation where we use only two sets of variables. Considering, to fix the ideas, the homogeneous Dirichlet problem for $$-\Delta\,u = g$$ in $$\Omega$$ , our variables are i) the approximations $$u_h^{s}$$ of u in each sub-domain $$\Omega^s$$ (each on its own grid), and ii) an approximation $$\Psi_h$$ of u on the skeleton (the union of the interfaces of the sub-domains) on an independent grid (that could often be uniform). The novelty is in the way to derive, from $$\Psi_h$$ , the values of each trace of $$u_h^{s}$$ on the boundary of each $$\Omega$$ . We do it by solving an auxiliary problem on each $$\partial\Omega^s$$ that resembles the mortar method but is more flexible. Under suitable assumptions, quasi-optimal error estimates are proved, uniformly with respect to the number and size of the subdomains. A preliminary version of the method and of its theoretical analysis has been presented in Bertoluzza et al. (15th international conference on domain decomposition methods, 2002).

[1]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[4]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[5]  Yuri V. Vassilevski,et al.  Analysis and parallel implementation of adaptive mortar element methods , 1998 .

[6]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[7]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[8]  Non-matching Grids and Lagrange Multipliers , 2005 .

[9]  Annalisa Buffa Error estimate for a stabilised domain decomposition method with nonmatching grids , 2002, Numerische Mathematik.

[10]  Franco Brezzi,et al.  Error estimates for the three-field formulation with bubble stabilization , 2001, Math. Comput..

[11]  Franco Brezzi,et al.  Stabilization of Galerkin Methods and Applications to Domain Decomposition , 1992, 25th Anniversary of INRIA.

[12]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[13]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[14]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[15]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[16]  J. Périaux,et al.  Domain Decomposition Methods in Science and Engineering , 1994 .

[17]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[18]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[19]  Franco Brezzi,et al.  Stabilization Techniques for Domain Decomposition Methods with Non-Matching Grids , 1997 .

[20]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[21]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[22]  Luc Tartar,et al.  Remarks on some interpolation spaces , 1994 .

[23]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.