The interfacial structure underpinning the Al-Ga liquid metal embrittlement: disorder vs. order gradients

[1]  Chi Chen,et al.  Genetic algorithm-guided deep learning of grain boundary diagrams: Addressing the challenge of five degrees of freedom , 2020, 2002.10632.

[2]  D. Kolman A Review of Recent Advances in the Understanding of Liquid Metal Embrittlement , 2019, CORROSION.

[3]  Chongze Hu,et al.  First-order grain boundary transformations in Au-doped Si: Hybrid Monte Carlo and molecular dynamics simulations verified by first-principles calculations , 2019, Scripta Materialia.

[4]  Jian Luo,et al.  Role of disordered bipolar complexions on the sulfur embrittlement of nickel general grain boundaries , 2018, Nature Communications.

[5]  A. O. Adelakun,et al.  Thermodynamics and vacuum distillation studies of liquid Al–Ga and In–Sn alloys , 2018 .

[6]  M. Harmer,et al.  Segregation-induced ordered superstructures at general grain boundaries in a nickel-bismuth alloy , 2017, Science.

[7]  Jakub Klečka,et al.  Characteristics and Liquid Metal Embrittlement of the steel T91 in contact with Lead–Bismuth Eutectic , 2016 .

[8]  J. Vogt,et al.  Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: The role of loading rate and of the oxygen content in the liquid metal , 2014 .

[9]  M. Tschopp,et al.  Atomic-scale analysis of liquid-gallium embrittlement of aluminum grain boundaries , 2013, 1312.2160.

[10]  M. Harmer,et al.  Atomic-resolution observation of Hf-doped alumina grain boundaries , 2013 .

[11]  M. Harmer,et al.  Identification of a bilayer grain boundary complexion in Bi-doped Cu , 2013 .

[12]  M. Harmer,et al.  The Role of a Bilayer Interfacial Phase on Liquid Metal Embrittlement , 2011, Science.

[13]  W. Kaplan,et al.  Order in nanometer thick intergranular films at Au-sapphire interfaces , 2011 .

[14]  W. Kaplan,et al.  Nanometer-Thick Equilibrium Films: The Interface Between Thermodynamics and Atomistics , 2011, Science.

[15]  W. Kaplan,et al.  Intergranular films at Au-sapphire interfaces , 2006 .

[16]  W. Sigle,et al.  Insight into the atomic-scale mechanism of liquid metal embrittlement , 2006 .

[17]  W. Ludwig,et al.  In situ investigation of liquid Ga penetration in Al bicrystal grain boundaries: grain boundary wetting or liquid metal embrittlement? , 2005 .

[18]  G. Duscher,et al.  Bismuth-induced embrittlement of copper grain boundaries , 2004, Nature materials.

[19]  W. Ludwig,et al.  Discontinuous penetration of liquid Ga into grain boundaries of Al polycrystals , 2004 .

[20]  Weibing Hu,et al.  HRTEM Study on Σ7 Grain Boundary in Aluminium Bicrystals with and without Ga Doping , 2000 .

[21]  H. Müllejans,et al.  Bismuth segregation at copper grain boundaries , 1999 .

[22]  F. Barbier,et al.  Liquid metal embrittlement: A state-of-the-art appraisal , 1999 .

[23]  Stephan Uhlemann,et al.  A spherical-aberration-corrected 200 kV transmission electron microscope , 1998 .

[24]  R. Hoagland,et al.  In-situ TEM observation of aluminum embrittlement by liquid gallium , 1998 .

[25]  P. Desré A mechanism for the stress independant grain boundary penetration of a metal by a liquid metal. Application to the metallic couple Al-Ga , 1997 .

[26]  M. Rühle,et al.  Improved quantification of grain boundary segregation by EDS in a dedicated STEM , 1997 .

[27]  Stumpf,et al.  Towards an understanding of liquid-metal embrittlement: Energetics of Ga on Al surfaces. , 1996, Physical review. B, Condensed matter.