Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity

This paper introduces ensembles of systematic accumulate-repeat-accumulate (ARA) codes which asymptotically achieve capacity on the binary erasure channel (BEC) with bounded complexity, per information bit, of encoding and decoding. It also introduces symmetry properties which play a central role in the construction of new capacity-achieving ensembles for the BEC. The results here improve on the tradeoff between performance and complexity provided by previous constructions of capacity-achieving code ensembles defined on graphs. The superiority of ARA codes with moderate to large block length is exemplified by computer simulations which compare their performance with those of previously reported capacity-achieving ensembles of low-density parity-check (LDPC) and irregular repeat-accumulate (IRA) codes. ARA codes also have the advantage of being systematic.

[1]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[4]  L. Dworsky An Introduction to Probability , 2008 .

[5]  Robert J. McEliece,et al.  On the complexity of reliable communication on the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[6]  P. Oswald,et al.  Capacity-achieving sequences for the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[7]  M. Aminshokrollahi New sequences of linear time erasure codes approaching the channel capacity , 1999 .

[8]  Rüdiger L. Urbanke,et al.  Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[9]  Dariush Divsalar,et al.  Design of Low-Density Parity-Check (LDPC) Codes for Deep-Space Applications , 2004 .

[10]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[11]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[12]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, ISIT.

[13]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[14]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[15]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[16]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[17]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[18]  Achilleas Anastasopoulos,et al.  Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels , 2005, ArXiv.

[19]  S. Dolinar,et al.  Accumulate-repeat-accumulate-accumulate-codes , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[20]  Charles M. Grinstead,et al.  Introduction to probability , 1986, Statistics for the Behavioural Sciences.

[21]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[22]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[23]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[24]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[26]  Rüdiger L. Urbanke,et al.  Complexity versus performance of capacity-achieving irregular repeat-accumulate codes on the binary erasure channel , 2004, IEEE Transactions on Information Theory.

[27]  Simon Litsyn,et al.  Approximately Lower Triangular Ensembles of LDPC Codes With Linear Encoding Complexity , 2006, IEEE Transactions on Information Theory.

[28]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.