Accumulate–Repeat–Accumulate Codes: Capacity-Achieving Ensembles of Systematic Codes for the Erasure Channel With Bounded Complexity
暂无分享,去创建一个
[1] Philippe Flajolet,et al. Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..
[2] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[3] Rüdiger L. Urbanke,et al. Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.
[4] L. Dworsky. An Introduction to Probability , 2008 .
[5] Robert J. McEliece,et al. On the complexity of reliable communication on the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[6] P. Oswald,et al. Capacity-achieving sequences for the erasure channel , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[7] M. Aminshokrollahi. New sequences of linear time erasure codes approaching the channel capacity , 1999 .
[8] Rüdiger L. Urbanke,et al. Capacity-achieving ensembles for the binary erasure channel with bounded complexity , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[9] Dariush Divsalar,et al. Design of Low-Density Parity-Check (LDPC) Codes for Deep-Space Applications , 2004 .
[10] Robert Michael Tanner,et al. A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.
[11] Daniel J. Costello,et al. Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.
[12] Dariush Divsalar,et al. Accumulate repeat accumulate codes , 2004, ISIT.
[13] Rüdiger L. Urbanke,et al. Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[14] Stephan ten Brink,et al. Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.
[15] G. Forney,et al. Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[16] David J. C. MacKay,et al. Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.
[17] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[18] Achilleas Anastasopoulos,et al. Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels , 2005, ArXiv.
[19] S. Dolinar,et al. Accumulate-repeat-accumulate-accumulate-codes , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.
[20] Charles M. Grinstead,et al. Introduction to probability , 1986, Statistics for the Behavioural Sciences.
[21] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[22] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[23] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[24] J. Thorpe. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .
[26] Rüdiger L. Urbanke,et al. Complexity versus performance of capacity-achieving irregular repeat-accumulate codes on the binary erasure channel , 2004, IEEE Transactions on Information Theory.
[27] Simon Litsyn,et al. Approximately Lower Triangular Ensembles of LDPC Codes With Linear Encoding Complexity , 2006, IEEE Transactions on Information Theory.
[28] Amin Shokrollahi,et al. Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.