Optimal approximation of SDE's with additive fractional noise
暂无分享,去创建一个
[1] Klaus Ritter,et al. Linear vs Standard Information for Scalar Stochastic Differential Equations , 2002, J. Complex..
[2] H. Woxniakowski. Information-Based Complexity , 1988 .
[3] Klaus Ritter,et al. Optimal approximation of stochastic differential equations by adaptive step-size control , 2000, Math. Comput..
[4] S. J. Lin,et al. Stochastic analysis of fractional brownian motions , 1995 .
[5] Ivan Nourdin. Calcul stochastique généralisé et applications au mouvement brownien fractionnaire : Estimation non paramétrique de la volatilité et test d'adéquation , 2004 .
[6] Marco Ferrante,et al. Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H , 2006 .
[7] Klaus Ritter,et al. Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.
[8] O. Seleznjev. Spline approximation of random processes and design problems , 2000 .
[9] Hu Yaozhong,et al. Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design , 1996 .
[10] S. Tindel,et al. Probabilistic models for vortex filaments based on fractional Brownian motion , 2003 .
[11] M. Zähle. Integration with respect to fractal functions and stochastic calculus. I , 1998 .
[12] ORDINARY DIFFERENTIAL EQUATIONS WITH FRACTAL NOISE , 1999 .
[13] Ivan Nourdin. Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire , 2005 .
[14] A. Nazarov,et al. Logarithmic L2-small ball asymptotics for some fractional Gaussian processes , 2005 .
[15] David Nualart,et al. Regularization of differential equations by fractional noise , 2002 .
[16] A. Ruzmaikina. Stochastic calculus with fractional Brownian motion , 1999 .
[17] L. Richard. Abstract , 1996, Journal of the Neurological Sciences.
[18] I. Nourdin,et al. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion , 2006 .
[19] D. Nualart,et al. Differential equations driven by fractional Brownian motion , 2002 .