Optimal approximation of SDE's with additive fractional noise

We study pathwise approximation of scalar stochastic differential equations with additive fractional Brownian noise of Hurst parameter H > 1/2, considering the mean square L2-error criterion. By means of the Malliavin calculus we derive the exact rate of convergence of the Euler scheme, also for nonequidistant discretizations. Moreover, we establish a sharp lower error bound that holds for arbitrary methods, which use a fixed number of bounded linear functionals of the driving fractional Brownian motion. The Euler scheme based on a discretization, which reflects the local smoothness properties of the equation, matches this lower error bound up to the factor 1.39.

[1]  Klaus Ritter,et al.  Linear vs Standard Information for Scalar Stochastic Differential Equations , 2002, J. Complex..

[2]  H. Woxniakowski Information-Based Complexity , 1988 .

[3]  Klaus Ritter,et al.  Optimal approximation of stochastic differential equations by adaptive step-size control , 2000, Math. Comput..

[4]  S. J. Lin,et al.  Stochastic analysis of fractional brownian motions , 1995 .

[5]  Ivan Nourdin Calcul stochastique généralisé et applications au mouvement brownien fractionnaire : Estimation non paramétrique de la volatilité et test d'adéquation , 2004 .

[6]  Marco Ferrante,et al.  Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H , 2006 .

[7]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[8]  O. Seleznjev Spline approximation of random processes and design problems , 2000 .

[9]  Hu Yaozhong,et al.  Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design , 1996 .

[10]  S. Tindel,et al.  Probabilistic models for vortex filaments based on fractional Brownian motion , 2003 .

[11]  M. Zähle Integration with respect to fractal functions and stochastic calculus. I , 1998 .

[12]  ORDINARY DIFFERENTIAL EQUATIONS WITH FRACTAL NOISE , 1999 .

[13]  Ivan Nourdin Schémas d'approximation associés à une équation différentielle dirigée par une fonction höldérienne; cas du mouvement brownien fractionnaire , 2005 .

[14]  A. Nazarov,et al.  Logarithmic L2-small ball asymptotics for some fractional Gaussian processes , 2005 .

[15]  David Nualart,et al.  Regularization of differential equations by fractional noise , 2002 .

[16]  A. Ruzmaikina Stochastic calculus with fractional Brownian motion , 1999 .

[17]  L. Richard Abstract , 1996, Journal of the Neurological Sciences.

[18]  I. Nourdin,et al.  On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion , 2006 .

[19]  D. Nualart,et al.  Differential equations driven by fractional Brownian motion , 2002 .