Electrically Conductive Porous Metal-Organic Frameworks.

Owing to their outstanding structural, chemical, and functional diversity, metal-organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy-related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long-range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed.

[1]  Gisela Orcajo,et al.  Synthesis of a honeycomb-like Cu-based metal-organic framework and its carbon dioxide adsorption behaviour. , 2013, Dalton transactions.

[2]  Mayank Pratap Singh,et al.  Synthesis, characterization, and calculated electronic structure of the crystalline metal-organic polymers [Hg(SC6H4S)(en)]n and [Pb(SC6H4S)(dien)]n. , 2012, Inorganic chemistry.

[3]  Torahiko Ando,et al.  Macromolecular electronic device: Field-effect transistor with a polythiophene thin film , 1986 .

[4]  Kim R. Dunbar,et al.  Verbindungen mit Übergangsmetallhauptketten: frischer Wind für ein altes Thema , 2002 .

[5]  Rahul Banerjee,et al.  High Charge Carrier Mobility in Two Dimensional Indium (III) Isophthalic Acid Based Frameworks , 2014 .

[6]  Wenping Hu,et al.  25th Anniversary Article: Key Points for High‐Mobility Organic Field‐Effect Transistors , 2013, Advanced materials.

[7]  Brian M. Foley,et al.  Thin Film Thermoelectric Metal–Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity , 2015, Advanced materials.

[8]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[9]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[10]  Gisela Orcajo,et al.  Journal and Proceedings of the Royal Institute of Chemistry of Great Britain and Ireland. Part 5. 1947 , 1947 .

[11]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[12]  F. Kapteijn,et al.  Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges , 2014 .

[13]  H. Fjellvåg,et al.  An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. , 2005, Angewandte Chemie.

[14]  Li Wang,et al.  Corrigendum: Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference , 2013, Nature Communications.

[15]  X. Crispin,et al.  Towards polymer-based organic thermoelectric generators , 2012 .

[16]  Richard Blom,et al.  Base‐Induced Formation of Two Magnesium Metal‐Organic Framework Compounds with a Bifunctional Tetratopic Ligand , 2008 .

[17]  XIII – Transport in intrinsic and homogeneously doped semiconductors , 2014 .

[18]  D. Perepichka,et al.  π-Electron conjugation in two dimensions. , 2013, Journal of the American Chemical Society.

[19]  J. Zuo,et al.  Hydrothermal syntheses and structures of three novel coordination polymers assembled from 1,2,3-triazolate ligands , 2009 .

[20]  Dennis Sheberla,et al.  Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. , 2015, Angewandte Chemie.

[21]  Christopher H. Hendon,et al.  Thermodynamic and electronic properties of tunable II–VI and IV–VI semiconductor based metal–organic frameworks from computational chemistry , 2013 .

[22]  Yugui Yao,et al.  Quantum spin Hall and Z 2 metallic states in an organic material , 2014 .

[23]  Zhongyue Zhang,et al.  Dramatically different conductivity properties of metal-organic framework polymorphs of Tl(TCNQ): an unexpected room-temperature crystal-to-crystal phase transition. , 2011, Angewandte Chemie.

[24]  Christopher H. Hendon,et al.  Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[25]  Roald Hoffmann,et al.  Interaction of orbitals through space and through bonds , 1971 .

[26]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[27]  T. Vaid,et al.  Semiconducting lead-sulfur-organic network solids. , 2008, Journal of the American Chemical Society.

[28]  J. K. Bera,et al.  Chain compounds based on transition metal backbones: new life for an old topic. , 2002, Angewandte Chemie.

[29]  P. Stallinga,et al.  Electronic Transport in Organic Materials: Comparison of Band Theory with Percolation/(Variable Range) Hopping Theory , 2011, Advanced materials.

[30]  Shu Seki,et al.  Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metal-organic framework with infinite (-Mn-S-)∞ chains and high intrinsic charge mobility. , 2013, Journal of the American Chemical Society.

[31]  Youngmee Kim,et al.  Thermally Robust 3-D Co-DpyDtolP-MOF with Hexagonally Oriented Micropores: Formation of Polyiodine Chains in a MOF Single Crystal , 2015 .

[32]  Feng Liu,et al.  Redox control and high conductivity of nickel bis(dithiolene) complex π-nanosheet: a potential organic two-dimensional topological insulator. , 2014, Journal of the American Chemical Society.

[33]  N. Brandon,et al.  Engineering porous materials for fuel cell applications , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Sanjay Tiwari,et al.  Charge mobility measurement techniques in organic semiconductors , 2009 .

[35]  T. Aida,et al.  Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. , 2012, Accounts of chemical research.

[36]  M. Hirscher,et al.  Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. , 2006, Chemical communications.

[37]  Wei Zhou,et al.  Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. , 2008, Journal of the American Chemical Society.

[38]  A. Underhill,et al.  Metal–metal interactions in transition-metal complexes containing infinite chains of metal atoms , 1972 .

[39]  K. Wieghardt,et al.  Electronic structure of bis(o-iminobenzosemiquinonato)metal complexes (Cu, Ni, Pd). The art of establishing physical oxidation states in transition-metal complexes containing radical ligands. , 2001, Journal of the American Chemical Society.

[40]  Ping Xie,et al.  Synthesis and structure of solution-stable one-dimensional palladium wires. , 2011, Nature chemistry.

[41]  M. E. Foster,et al.  Guest-Induced Emergent Properties in Metal-Organic Frameworks. , 2015, The journal of physical chemistry letters.

[42]  Jayant Kumar,et al.  Techniques for Characterization of Charge Carrier Mobility in Organic Semiconductors , 2012 .

[43]  William R. Dichtel,et al.  Rationally synthesized two-dimensional polymers. , 2013, Nature chemistry.

[44]  M. Allendorf,et al.  MOF-based electronic and opto-electronic devices. , 2014, Chemical Society reviews.

[45]  Mircea Dincă,et al.  Facile deposition of multicolored electrochromic metal-organic framework thin films. , 2013, Angewandte Chemie.

[46]  T. Heine,et al.  Photoinduzierte Erzeugung von Ladungsträgern in epitaktischen MOF-Dünnschichten: hohe Leistung aufgrund einer indirekten elektronischen Bandlücke? , 2015 .

[47]  Hanhua Zhao,et al.  New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior , 1999 .

[48]  Zhenan Bao,et al.  Side Chain Engineering in Solution-Processable Conjugated Polymers , 2014 .

[49]  Liang Chen,et al.  First-principles study of microporous magnets M-MOF-74 (M = Ni, Co, Fe, Mn): the role of metal centers. , 2013, Inorganic Chemistry.

[50]  Aron Walsh,et al.  Electronic Structure Modulation of Metal–Organic Frameworks for Hybrid Devices , 2014, ACS applied materials & interfaces.

[51]  X. Duan,et al.  Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. , 2012, Chemistry.

[52]  J. Reynolds,et al.  Intrinsically electrically conducting poly(metal tetrathiooxalates) , 1987 .

[53]  Optical and Transport Properties of Metals , 2014 .

[54]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[55]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[56]  D. Sholl,et al.  Computational Prediction of Metal Organic Frameworks Suitable for Molecular Infiltration as a Route to Development of Conductive Materials. , 2015, The journal of physical chemistry letters.

[57]  C. Tanford Macromolecules , 1994, Nature.

[58]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[59]  Christopher H. Hendon,et al.  Chemical principles underpinning the performance of the metal–organic framework HKUST-1 , 2015, Chemical science.

[60]  Oana D. Jurchescu,et al.  Charge-transfer complexes: new perspectives on an old class of compounds , 2014 .

[61]  Xing Meng,et al.  A europium(III) based metal–organic framework: bifunctional properties related to sensing and electronic conductivity , 2014 .

[62]  G. Kilibarda,et al.  Photoinduced Charge-Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap? , 2015, Angewandte Chemie.

[63]  Alán Aspuru-Guzik,et al.  High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue. , 2014, Journal of the American Chemical Society.

[64]  M. Allendorf,et al.  Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal−Organic Framework , 2010 .

[65]  G. Shimizu,et al.  MOFs as proton conductors--challenges and opportunities. , 2014, Chemical Society reviews.

[66]  T. Swager,et al.  Conducting metallopolymers: the roles of molecular architecture and redox matching. , 2005, Chemical communications.

[67]  D. D’Alessandro,et al.  Towards Conducting Metal-Organic Frameworks , 2011 .

[68]  Takehiko Mori,et al.  Conducting organic frameworks based on a main-group metal and organocyanide radicals. , 2013, Chemistry.

[69]  Christopher H. Hendon,et al.  Conductive metal-organic frameworks and networks: fact or fantasy? , 2012, Physical chemistry chemical physics : PCCP.

[70]  E. Gutiérrez‐Puebla,et al.  Stable organic radical stacked by in situ coordination to rare earth cations in MOF materials , 2012 .

[71]  Mircea Dincă,et al.  Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks. , 2015, Journal of the American Chemical Society.

[72]  Mariko Miyachi,et al.  π-Conjugated nickel bis(dithiolene) complex nanosheet. , 2013, Journal of the American Chemical Society.

[73]  A Alec Talin,et al.  A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. , 2011, Chemistry.

[74]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[75]  John P. Ferraris,et al.  Electron transfer in a new highly conducting donor-acceptor complex , 1973 .

[76]  M. Yamashita,et al.  Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. , 2009, Inorganic chemistry.

[77]  Dieter K. Schroder,et al.  Semiconductor Material and Device Characterization: Schroder/Semiconductor Material and Device Characterization, Third Edition , 2005 .

[78]  F. Zamora,et al.  Electrical conductive coordination polymers. , 2012, Chemical Society reviews.

[79]  M. Mecklenburg,et al.  Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. , 2015, Journal of the American Chemical Society.

[80]  H. Nishihara,et al.  Interfacial Synthesis of Electrically Conducting Palladium Bis(dithiolene) Complex Nanosheet. , 2015, ChemPlusChem.

[81]  Aron Walsh,et al.  Computational screening of structural and compositional factors for electrically conductive coordination polymers. , 2014, Physical chemistry chemical physics : PCCP.

[82]  Feng Liu,et al.  Prediction of a two-dimensional organic topological insulator. , 2013, Nano letters.

[83]  Craig M. Brown,et al.  Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. , 2011, Journal of the American Chemical Society.

[84]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[85]  T. Bein,et al.  A Covalent Organic Framework with 4 nm open poresw , 2010 .

[86]  S. Tagawa,et al.  Charge-carrier dynamics in polythiophene films studied by in-situ measurement of flash-photolysis time-resolved microwave conductivity (FP-TRMC) and transient optical spectroscopy (TOS) , 2006 .

[87]  C. C. Epley,et al.  Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. , 2014, Journal of the American Chemical Society.

[88]  E. Reinheimer,et al.  Highly conducting coordination polymers based on infinite M(4,4'-bpy) chains flanked by regular stacks of non-integer TCNQ radicals. , 2011, Angewandte Chemie.

[89]  Zhengtao Xu,et al.  An electroactive porous network from covalent metal-dithiolene links. , 2014, Chemical communications.

[90]  Christopher H. Hendon,et al.  Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O) , 2015, Journal of the American Chemical Society.

[91]  M. Dincǎ,et al.  High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[92]  Xinliang Feng,et al.  Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. , 2015, Angewandte Chemie.

[93]  M. Oschatz,et al.  Tailoring porosity in carbon materials for supercapacitor applications , 2014 .

[94]  Qiang Sun,et al.  Enhanced ferromagnetism in a Mn(3)C(12)N(12)H(12) sheet. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[95]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[96]  M. Rice One Dimensional Metals , 1975 .

[97]  Xiangke Liao,et al.  Correction: Corrigendum: Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax , 2015, Nature Communications.

[98]  Z. Su,et al.  Electrical conductivity and electroluminescence of a new anthracene-based metal-organic framework with π-conjugated zigzag chains. , 2016, Chemical communications.

[99]  S. Kitagawa,et al.  Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. , 2013, Accounts of chemical research.

[100]  William R. Dichtel,et al.  Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. , 2010, Nature chemistry.

[101]  Daoben Zhu,et al.  Organic Thermoelectric Materials and Devices Based on p‐ and n‐Type Poly(metal 1,1,2,2‐ethenetetrathiolate)s , 2012, Advanced materials.