Robust Bayesian inference via γ-divergence

Abstract This paper presents the robust Bayesian inference based on the γ-divergence which is the same divergence as “type 0 divergence” in Jones et al. (2001) on the basis of Windham (1995). It is known that the minimum γ-divergence estimator works well to estimate the probability density for heavily contaminated data, and to estimate the variance parameters. In this paper, we propose a robust posterior distribution against outliers based on the γ-divergence and show the asymptotic properties of the proposed estimator. We also discuss some robustness properties of the proposed estimator and illustrate its performances in some simulation studies.

[1]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[2]  Anthony O'Hagan,et al.  Bayesian robustness modeling using regularly varying distributions , 2006 .

[3]  M. P. Windham Robustifying Model Fitting , 1995 .

[4]  A. Basu,et al.  Robust Bayes estimation using the density power divergence , 2016 .

[5]  A. Dawid Posterior expectations for large observations , 1973 .

[6]  M. C. Jones,et al.  A Comparison of related density-based minimum divergence estimators , 2001 .

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  D. Dey,et al.  Robust Bayesian analysis using divergence measures , 1994 .

[9]  Jun Sese,et al.  Robust sparse Gaussian graphical modeling , 2015, J. Multivar. Anal..

[10]  Alain Desgagn'e Robustness to outliers in location–scale parameter model using log-regularly varying distributions , 2015, 1507.08436.

[11]  Hironori Fujisawa,et al.  Robust and Sparse Regression via γ-Divergence , 2016, Entropy.

[12]  Giles Hooker,et al.  Bayesian model robustness via disparities , 2011, 1112.4213.

[13]  L. Wasserman,et al.  Local sensitivity diagnostics for Bayesian inference , 1995 .

[14]  Jayanta K. Ghosh,et al.  An Introduction to Bayesian Analysis , 2006 .

[15]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[16]  S. Eguchi,et al.  Robust parameter estimation with a small bias against heavy contamination , 2008 .

[17]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[18]  M. C. Jones,et al.  Robust and efficient estimation by minimising a density power divergence , 1998 .