Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization

Abstract We fabricated an electronically controlled polymer optical fiber cleaver, which uses a razor-blade guillotine and provides independent control of fiber temperature, blade temperature, and cleaving speed. To determine the optimum cleaving conditions of microstructured polymer optical fibers (mPOFs) with hexagonal hole structures we developed a program for cleaving quality optimization, which reads in a microscope image of the fiber end-facet and determines the core-shift and the statistics of the hole diameter, hole-to-hole pitch, hole ellipticity, and direction of major ellipse axis. For 125 μm in diameter mPOFs of the standard polymer PMMA we found the optimum temperatures to be 77.5 °C for both blade and fiber. For 280 μm in diameter mPOFs of the humidity insensitive polymer TOPAS® (grade 8007) the optimum temperature was 40° for both blade and fiber. A 100 μm thick flat-edge blade was found to minimize the core-shift by the cleaving to only 298 nm or 5% of the pitch for the PMMA mPOF at the optimal temperature.

[1]  M. Large,et al.  Liquid-filled hollow core microstructured polymer optical fiber. , 2006, Optics express.

[2]  Nicolas Godbout,et al.  Prospective for biodegradable microstructured optical fibers. , 2007, Optics letters.

[3]  Leon Poladian,et al.  Recent progress in microstructured polymer optical fibre fabrication and characterisation , 2003 .

[4]  S. Lacroix,et al.  Drawing of the hollow all-polymer Bragg fibers. , 2006, Optics express.

[5]  Kyriacos Kalli,et al.  Thermal response of Bragg gratings in PMMA microstructured optical fibers. , 2007, Optics express.

[6]  Kunimasa Saitoh,et al.  Applicability of classical optical fiber theories to holey fibers. , 2004, Optics letters.

[7]  Christos Markos,et al.  Narrow Bandwidth 850-nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers , 2011, IEEE Photonics Technology Letters.

[8]  John Canning,et al.  UV laser cleaving of air-polymer structured fibre , 2002 .

[9]  A. Argyros,et al.  Microstructured Polymer Optical Fibers , 2009, Journal of Lightwave Technology.

[10]  Maryanne C. J. Large,et al.  Cleaving microstructured polymer optical fibres , 2005 .

[11]  David J. Webb,et al.  827 nm Bragg grating sensor in multimode microstructured polymer optical fibre , 2010 .

[12]  A Argyros,et al.  Stable imprinting of long-period gratings in microstructured polymer optical fibre. , 2006, Optics express.

[13]  Whayne Padden,et al.  Mechanically induced long-period gratings in microstructured polymer fibre , 2004 .

[14]  Leon Poladian,et al.  Beyond the bandwidth-length product: Graded index microstructured polymer optical fiber , 2007 .

[15]  Richard Lwin,et al.  Cleaved end-face quality of microstructured polymer optical fibres , 2006 .

[16]  M. Large,et al.  Solution doping of microstructured polymer optical fibres. , 2004, Optics express.

[17]  Simon Fleming,et al.  Microstructured polymer optical fibre. , 2001 .

[18]  Peter Uhd Jepsen,et al.  Bendable, low-loss Topas fibers for the terahertz frequency range. , 2009, Optics express.

[19]  Bjarke Rose,et al.  Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings , 2011 .

[20]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber , 2007 .

[21]  Christian-Alexander Bunge,et al.  Microstructured Polymer Optical Fibers Compared to Conventional POF: Novel Properties and Applications , 2010, IEEE Sensors Journal.

[22]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber: erratum , 2007 .

[23]  J. Jensen,et al.  Photonic crystal fiber long-period gratings for biochemical sensing. , 2006, Optics express.

[24]  D. Webb,et al.  Humidity insensitive TOPAS polymer fiber Bragg grating sensor. , 2011, Optics express.

[25]  Ole Bang,et al.  Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing , 2007, 0708.4382.

[26]  Richard Lwin,et al.  The effect of fabrication parameters on the cleaving of microstructured polymer optical fibers , 2006, SPIE Optics + Photonics.

[27]  J. Jensen,et al.  Selective detection of antibodies in microstructured polymer optical fibers. , 2005, Optics express.

[28]  Kyriacos Kalli,et al.  Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers. , 2005, Optics letters.

[29]  Mervyn J. Kowalsky,et al.  Cleaving of solid single mode polymer optical fiber for strain sensor applications , 2009 .

[30]  G. Barton,et al.  Microstructured Polymer Optical Fibres: New Opportunities and Challenges , 2006 .

[31]  Alexander Argyros,et al.  Surface enhanced Raman scattering in a hollow core microstructured optical fiber. , 2007, Optics express.

[32]  D. Abbott,et al.  Cleaving of Extremely Porous Polymer Fibers , 2009, IEEE Photonics Journal.

[33]  David J. Webb,et al.  Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer , 2011 .

[34]  Alexander Argyros,et al.  Hollow-core microstructured polymer optical fiber. , 2006, Optics letters.

[35]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber. , 2007, Optics letters.

[36]  N. Mortensen Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers. , 2005, Optics letters.