Symmetric motifs in random geometric graphs

We study symmetric motifs in random geometric graphs. Symmetric motifs are subsets of nodes which have the same adjacencies. These subgraphs are particularly prevalent in random geometric graphs and appear in the Laplacian and adjacency spectrum as sharp, distinct peaks, a feature often found in real-world networks. We look at the probabilities of their appearance and compare these across parameter space and dimension. We then use the Chen-Stein method to derive the minimum separation distance in random geometric graphs which we apply to study symmetric motifs in both the intensive and thermodynamic limits. In the thermodynamic limit the probability that the closest nodes are symmetric approaches one, whilst in the intensive limit this probability depends upon the dimension.

[1]  Daisuke Watanabe,et al.  A Study on Analyzing the Grid Road Network Patterns using Relative Neighborhood Graph , 2010 .

[2]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[3]  James S. Thorp,et al.  Computer Relaying for Power Systems , 2009 .

[4]  Marta C. González,et al.  Understanding spatial connectivity of individuals with non-uniform population density , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Paul Blackwell,et al.  Spectra of adjacency matrices of random geometric graphs , 2006 .

[6]  Kevin E. Bassler,et al.  Mesoscopic structures and the Laplacian spectra of random geometric graphs , 2014, J. Complex Networks.

[7]  Paul Erdös,et al.  On random graphs, I , 1959 .

[8]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Desmond J. Higham,et al.  Fitting a geometric graph to a protein-protein interaction network , 2008, Bioinform..

[10]  Qing Zhang,et al.  Stochastic Analysis, Control, Optimization and Applications , 2012 .

[11]  M. Walters Surveys in Combinatorics 2011: Random geometric graphs , 2011 .

[12]  Jeffrey G. Andrews,et al.  Stochastic geometry and random graphs for the analysis and design of wireless networks , 2009, IEEE Journal on Selected Areas in Communications.

[13]  L. Gordon,et al.  Poisson Approximation and the Chen-Stein Method , 1990 .

[14]  Edmund M. Yeh,et al.  Cascading Link Failure in the Power Grid: A Percolation-Based Analysis , 2011, 2011 IEEE International Conference on Communications Workshops (ICC).

[15]  Piyush Gupta,et al.  Critical Power for Asymptotic Connectivity in Wireless Networks , 1999 .

[16]  Thilo Gross,et al.  Mesoscale symmetries explain dynamical equivalence of food webs , 2012, 1205.6074.

[17]  A. Arenas,et al.  Synchronization processes in complex networks , 2006, nlin/0610057.

[18]  Ernesto Estrada,et al.  Consensus dynamics on random rectangular graphs , 2016 .

[19]  Ben D. MacArthur,et al.  Symmetry in complex networks , 2007, Discret. Appl. Math..

[20]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[21]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[22]  C. Dettmann,et al.  Connectivity of networks with general connection functions , 2014, Physical review. E.

[23]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[24]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.

[25]  Ernesto Estrada,et al.  Synchronizability of random rectangular graphs. , 2015, Chaos.

[26]  Piet Van Mieghem,et al.  Graph Spectra for Complex Networks , 2010 .

[27]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[28]  William J. Kaiser,et al.  Wireless Integrated Network Sensors Next Generation , 2004 .

[29]  Yamir Moreno,et al.  Synchronization in Random Geometric Graphs , 2009, Int. J. Bifurc. Chaos.

[30]  Thilo Gross,et al.  Engineering mesoscale structures with distinct dynamical implications , 2012, New Journal of Physics.

[31]  Z. Toroczkai,et al.  Proximity networks and epidemics , 2007 .

[32]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[33]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[34]  Maziar Nekovee,et al.  Worm epidemics in wireless ad hoc networks , 2007, ArXiv.

[35]  Rubén J. Sánchez-García,et al.  Spectral characteristics of network redundancy. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Mark Newman,et al.  Networks: An Introduction , 2010 .