The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 Å Resolution*

Multidrug resistance in Gram-negative bacteria arises in part from the activities of tripartite drug efflux pumps. In the pathogen Vibrio cholerae, one such pump comprises the inner membrane proton antiporter VceB, the periplasmic adaptor VceA, and the outer membrane channel VceC. Here, we report the crystal structure of VceC at 1.8 Å resolution. The trimeric VceC is organized in the crystal lattice within laminar arrays that resemble membranes. A well resolved detergent molecule within this array interacts with the transmembrane β-barrel domain in a fashion that may mimic proteinlipopolysaccharide contacts. Our analyses of the external surfaces of VceC and other channel proteins suggest that different classes of efflux pumps have distinct architectures. We discuss the implications of these findings for mechanisms of drug and protein export.

[1]  E. Bokma,et al.  Structure of the periplasmic component of a bacterial drug efflux pump. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  V S Lamzin,et al.  ARP/wARP and molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[3]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[4]  C. Calladine,et al.  The role of the TolC family in protein transport and multidrug efflux. From stereochemical certainty to mechanistic hypothesis. , 2001, European journal of biochemistry.

[5]  Satoshi Murakami,et al.  Crystal structure of bacterial multidrug efflux transporter AcrB , 2002, Nature.

[6]  A. Sali,et al.  Modeller: generation and refinement of homology-based protein structure models. , 2003, Methods in enzymology.

[7]  K. Mizuguchi,et al.  A model of a transmembrane drug‐efflux pump from Gram‐negative bacteria , 2004, FEBS letters.

[8]  A. Walmsley,et al.  Structure and function of efflux pumps that confer resistance to drugs. , 2003, The Biochemical journal.

[9]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[10]  Gerry McDermott,et al.  Structural Basis of Multiple Drug-Binding Capacity of the AcrB Multidrug Efflux Pump , 2003, Science.

[11]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[12]  C. Andersen,et al.  An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations , 2002, Molecular microbiology.

[13]  Masato Yoshimura,et al.  Crystal Structure of the Drug Discharge Outer Membrane Protein, OprM, of Pseudomonas aeruginosa , 2004, Journal of Biological Chemistry.

[14]  P. Choudhury,et al.  Association of metal tolerance with multiple antibiotic resistance of enteropathogenic organisms isolated from coastal region of deltaic Sunderbans. , 1996, The Indian journal of medical research.

[15]  T L Blundell,et al.  A variable gap penalty function and feature weights for protein 3-D structure comparisons. , 1992, Protein engineering.

[16]  K. Poole,et al.  Mutational Analysis of the OprM Outer Membrane Component of the MexA-MexB-OprM Multidrug Efflux System ofPseudomonas aeruginosa , 2001, Journal of bacteriology.

[17]  E. Bokma,et al.  Transition to the open state of the TolC periplasmic tunnel entrance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  H. Zgurskaya,et al.  AcrA, AcrB, and TolC of Escherichia coli Form a Stable Intermembrane Multidrug Efflux Complex* , 2004, Journal of Biological Chemistry.

[19]  R. Abagyan,et al.  Optimal docking area: A new method for predicting protein–protein interaction sites , 2004, Proteins.

[20]  T. Tsukihara,et al.  Crystal Structure of the Membrane Fusion Protein, MexA, of the Multidrug Transporter in Pseudomonas aeruginosa* , 2004, Journal of Biological Chemistry.

[21]  D. Eisenberg,et al.  VERIFY3D: assessment of protein models with three-dimensional profiles. , 1997, Methods in enzymology.

[22]  A Vagin,et al.  An approach to multi-copy search in molecular replacement. , 2000, Acta crystallographica. Section D, Biological crystallography.

[23]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[24]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[25]  K. Wilson,et al.  Efficient anisotropic refinement of macromolecular structures using FFT. , 1999, Acta crystallographica. Section D, Biological crystallography.

[26]  D S Moss,et al.  Main-chain bond lengths and bond angles in protein structures. , 1993, Journal of molecular biology.

[27]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[28]  J. Fralick,et al.  Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae , 1998, Molecular microbiology.

[29]  Charlotte M. Deane,et al.  JOY: protein sequence-structure representation and analysis , 1998, Bioinform..