Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction

The continuous combustion of non-renewable fossil fuels and depletion of existing resources is intensifying the research and development of alternative future energy options that can directly abate and process ever-increasing carbon dioxide (CO2) emissions. Since CO2 is a thermodynamically stable compound, its reduction must not consume additional energy or increase net CO2 emissions. Renewable sources like solar energy provide readily available and continuous light supply required for driving this conversion process. Therefore, the use of solar energy to drive CO2 photocatalytic reactions simultaneously addresses the aforementioned challenges, while producing sustainable fuels or chemicals suitable for use in existing energy infrastructure. Recent progress in this area has focused on the development and testing of promising TiO2 based photocatalysts in different reactor configurations due to their unique physicochemical properties for CO2 photoreduction. TiO2 nanostructured materials with different morphological and textural properties modified by using organic and inorganic compounds as photosensitizers (dye sensitization), coupling semiconductors of different energy levels or doping with metals or non-metals have been tested. This review presents contemporary views on state of the art in photocatalytic CO2 reduction over titanium oxide (TiO2) nanostructured materials, with emphasis on material design and reactor configurations. In this review, we discuss existing and recent TiO2 based supports, encompassing comparative analysis of existing systems, novel designs being employed to improve selectivity and photoconversion rates as well as emerging opportunities for future development, crucial to the field of CO2 photocatalytic reduction. The influence of different operating and morphological variables on the selectivity and efficiency of CO2 photoreduction is reviewed. Finally, perspectives on the progress of TiO2 induced photocatalysis for CO2 photoreduction will be presented.

[1]  A. Mohamed,et al.  Modification of MWCNT@TiO2 core–shell nanocomposites with transition metal oxide dopants for photoreduction of carbon dioxide into methane , 2014 .

[2]  E. Akkaya,et al.  Dye sensitized CO2 reduction over pure and platinized TiO2 , 2007 .

[3]  J. Wu,et al.  Photocatalytic NO reduction with C3H8 using a monolith photoreactor , 2011 .

[4]  M. Anpo,et al.  Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts , 1995 .

[5]  M. Anpo,et al.  Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O , 2003 .

[6]  M. Maroto-Valer,et al.  Transition metal oxide based TiO2 nanoparticles for visible light induced CO2 photoreduction , 2015 .

[7]  Wenguang Tu,et al.  Robust Hollow Spheres Consisting of Alternating Titania Nanosheets and Graphene Nanosheets with High Photocatalytic Activity for CO2 Conversion into Renewable Fuels , 2012 .

[8]  S. Muraishi,et al.  In-situ monitoring of PE-CVD growth of TiO2 films with laser Raman spectroscopy , 2000 .

[9]  B. Hameed,et al.  The advancements in sol–gel method of doped-TiO2 photocatalysts , 2010 .

[10]  B. Clerjaud,et al.  Optical Absorption of Impurities and Defects in Semiconducting Crystals-Preamble , 2017 .

[11]  D. Krishnaiah,et al.  Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: a review paper. , 2008, Journal of hazardous materials.

[12]  Lukas Schmidt-Mende,et al.  Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors , 2013 .

[13]  Jun Wang,et al.  Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce–TiO2/SBA-15 composites , 2012 .

[14]  C. Su,et al.  Sol-gel preparation and photocatalysis of titanium dioxide , 2004 .

[15]  I-Hsiang Tseng,et al.  Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts , 2002 .

[16]  Rodrigo J. G. Lopes,et al.  RETRACTED: Heterogeneous photo-enhanced conversion of carbon dioxide to formic acid with copper- and gallium-doped titania nanocomposites , 2013 .

[17]  Danièle Revel,et al.  IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation , 2011 .

[18]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[19]  H. Gafney,et al.  Photocatalyzed conversion of CO2 to CH4: an excited-state acid-base mechanism. , 2013, The journal of physical chemistry. A.

[20]  B. Li,et al.  Ordered mesoporous CeO2-TiO2 composites: Highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation , 2013 .

[21]  J. Moulijn,et al.  How phase composition influences optoelectronic and photocatalytic properties of TiO2 , 2011 .

[22]  N. Russo,et al.  New nanostructured silica incorporated with isolated Ti material for the photocatalytic conversion of CO2 to fuels , 2014, Nanoscale Research Letters.

[23]  Titanium Dioxide Nanomaterials : Synthesis , Structures and Applications , 2012 .

[24]  G. Mul,et al.  Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? , 2010, Journal of the American Chemical Society.

[25]  Xiaobo Chen,et al.  Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications , 2007 .

[26]  Stefan Bachu,et al.  CO2 storage in geological media: Role, means, status and barriers to deployment , 2008 .

[27]  M. Audier,et al.  Liquid phase processing and thin film deposition of titania nanocrystallites for photocatalytic applications on thermally sensitive substrates , 2003 .

[28]  V. Matějka,et al.  Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction , 2011 .

[29]  M. Hirota,et al.  CO2 Reforming Performance and Visible Light Responsibility of Cr-Doped TiO2 Prepared by Sol-Gel and Dip-Coating Method , 2010 .

[30]  Tom Van Gerven,et al.  A review of intensification of photocatalytic processes , 2007 .

[31]  K. Eguchi,et al.  Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix , 1998 .

[32]  C. H. Lee,et al.  Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. , 2001, Environmental science & technology.

[33]  Takeshi Morikawa,et al.  Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis , 2007 .

[34]  Jiaguo Yu,et al.  Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel , 2014, Science China Materials.

[35]  Dong Liu,et al.  Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor , 2011 .

[36]  M. Mercedes Maroto-Valer,et al.  Developments and innovation in carbon dioxide (CO 2 ) capture and storage technology , 2010 .

[37]  Dean T. Tompkins,et al.  Shedding light on photocatalysis. Discussion , 2005 .

[38]  T. Xie,et al.  Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2 , 2001 .

[39]  Masaaki Kitano,et al.  Recent developments in titanium oxide-based photocatalysts , 2007 .

[40]  M. Anpo Utilization of TiO2 photocatalysts in green chemistry , 2000 .

[41]  E. Baeissa Green synthesis of methanol by photocatalytic reduction of CO2 under visible light using a graphene and tourmaline co-doped titania nanocomposites , 2014 .

[42]  F. Mizukami,et al.  Microstructure and phase transformation behavior of doped nanostructured titania , 1999 .

[43]  P. Edwards,et al.  Turning carbon dioxide into fuel , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  K. Sohlberg,et al.  Doping of TiO 2 Polymorphs for Altered Optical and Photocatalytic Properties , 2009 .

[45]  M. Hoffmann,et al.  Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reactor: Photocatalytic Degradation of 4-Chlorophenol. , 1995, Environmental science & technology.

[46]  A. Zaleska,et al.  CARBON DIOXIDE PHOTOCONVERSION. THE EFFECT OF TITANIUM DIOXIDE IMMOBILIZATION CONDITIONS AND PHOTOCATALYST TYPE , 2012 .

[47]  B. Hameed,et al.  Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. , 2009, Journal of hazardous materials.

[48]  Langhuan Huang,et al.  Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light , 2007 .

[49]  Jackie Y. Ying,et al.  Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts , 1998 .

[50]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[51]  Hung Ji Huang,et al.  Application of Optical-fiber Photoreactor for CO2 Photocatalytic Reduction , 2008 .

[52]  Lucie Obalová,et al.  Effect of silver doping on the TiO2 for photocatalytic reduction of CO2 , 2010 .

[53]  J. Wu,et al.  Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor , 2008 .

[54]  J. Wu,et al.  Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol , 2009 .

[55]  J. Wu,et al.  A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis , 2013 .

[56]  Pratim Biswas,et al.  Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. , 2012, Journal of the American Chemical Society.

[57]  Yubao Zhao,et al.  Preparation and characterization of N–I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation , 2009 .

[58]  V. Meille,et al.  Review on methods to deposit catalysts on structured surfaces , 2006 .

[59]  M. Hirota,et al.  CO2 Reforming Characteristics under Visible Light Response of Cr- or Ag-Doped TiO2 Prepared by Sol-Gel and Dip-Coating Process , 2012 .

[60]  A. Mohamed,et al.  Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane , 2015 .

[61]  Jiaguo Yu,et al.  Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance , 2015 .

[62]  Jian-Guo Yu,et al.  Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst , 2009 .

[63]  L. Matějová,et al.  Preparation and characterization of Ag-doped crystalline titania for photocatalysis applications , 2012 .

[64]  Yingjie Zhu,et al.  Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property , 2010, Nanoscale research letters.

[65]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[66]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[67]  Detlef W. Bahnemann,et al.  Preparation and Characterization of Quantum Size Zinc Oxide: A Detailed Spectroscopic Study. , 1987 .

[68]  Hosna W. Nasution,et al.  Effect of Copper Species in a Photocatalytic Synthesis of Methanol from Carbon Dioxide over Copper-doped Titania Catalysts , 2009 .

[69]  M. Olivares-Marín,et al.  Development of adsorbents for CO2 capture from waste materials: a review , 2012 .

[70]  Jarnuzi Gunlazuardi,et al.  Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method , 2005 .

[71]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[72]  K. Hashimoto,et al.  TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds , 2000 .

[73]  Congjun Wang,et al.  Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts , 2011 .

[74]  J. Wu,et al.  Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction , 2004 .

[75]  A. Zaleska,et al.  Methane formation over TiO2-based photocatalysts: Reaction pathways , 2015 .

[76]  Stefano Peratello,et al.  Experimental methods in catalytic kinetics , 1999 .

[77]  N. Dimitrijević,et al.  Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition , 2009 .

[78]  M. Fan,et al.  High efficiency photocatalytic conversion of CO2 with H2O over Pt/TiO2 nanoparticles , 2014 .

[79]  L. Erickson,et al.  Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde , 2007 .

[80]  H. Yoneyama,et al.  Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents , 1998 .

[81]  Seng Sing Tan,et al.  Photosynthesis of hydrogen and methane as key components for clean energy system , 2007 .

[82]  J. Yano,et al.  Selective ethylene formation by pulse-mode electrochemical reduction of carbon dioxide using copper and copper-oxide electrodes , 2007 .

[83]  Mikkel Jørgensen,et al.  The teraton challenge. A review of fixation and transformation of carbon dioxide , 2010 .

[84]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[85]  M. Anpo Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocatalysts Able to Operate under UV–Visible Light Irradiation: Approaches in Realizing High Efficiency in the Use of Visible Light , 2004 .

[86]  F. Weiss,et al.  High quality YBa2Cu3O7−δ/PrBa2Cu3O7−δ multilayers grown by pulsed injection MOCVD , 2000 .

[87]  J. Moulijn,et al.  An internally illuminated monolith reactor: Pros and cons relative to a slurry reactor , 2009 .

[88]  Dong Liu,et al.  Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior , 2012 .

[89]  Jinlong Zhang,et al.  Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III) , 2007 .

[90]  Lan Yuan,et al.  Photocatalytic conversion of CO2 into value-added and renewable fuels , 2015 .

[91]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[92]  Xuan Wang,et al.  Synthesis of spherical Bi 2 WO 6 nanoparticles by a hydrothermal route and their photocatalytic properties , 2015 .

[93]  Demetri Psaltis Optofluidics for energy applications , 2013 .

[94]  Ajay K. Ray,et al.  Major Challenges in the Design of a Large-Scale Photocatalytic Reactor for Water Treatment , 1999 .

[95]  M. Maroto-Valer,et al.  Role of catalyst carriers in CO2 photoreduction over nanocrystalline nickel loaded TiO2-based photocatalysts , 2014 .

[96]  Z. Salehi,et al.  Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation , 2014 .

[97]  C. Creutz,et al.  CARBON DIOXIDE AS A FEEDSTOCK. , 2000 .

[98]  Yongjun Yuan,et al.  A copper(I) dye-sensitised TiO2-based system for efficient light harvesting and photoconversion of CO2 into hydrocarbon fuel. , 2012, Dalton transactions.

[99]  Shijie Cao,et al.  Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization , 2013, Scientific Reports.

[100]  Mietek Jaroniec,et al.  Semiconductor-based photocatalytic CO2 conversion , 2015 .

[101]  H. Matsumoto,et al.  Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices , 1997 .

[102]  Juan-Yu Yang,et al.  An improvement on sol-gel method for preparing ultrafine and crystallized titania powder , 2000 .

[103]  Dinesh O. Shah,et al.  Particulate Systems in Nano- and Biotechnologies , 2008 .

[104]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[105]  Tsunehiro Tanaka,et al.  Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K) , 2010 .

[106]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[107]  J. Herrmann,et al.  Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants , 1999 .

[108]  K. Kočí,et al.  Preparation and characterization of ZnS nanoparticles deposited on montmorillonite. , 2010, Journal of colloid and interface science.

[109]  R. Naidu,et al.  Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review , 2009 .

[110]  K. Choy Chemical vapour deposition of coatings , 2003 .

[111]  F. Solymosi,et al.  Photocatalytic reaction of H2O+CO2 over pure and doped Rh/TiO2 , 1994 .

[112]  Ying Li,et al.  Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels , 2011 .

[113]  Wei Li,et al.  Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2 , 2012 .

[114]  Y. Ku,et al.  The light transmission and distribution in an optical fiber coated with TiO2 particles. , 2003, Chemosphere.

[115]  Y. Irokawa,et al.  Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation , 2006 .

[116]  Andrew T. Harris,et al.  Review of Major Design and Scale-up Considerations for Solar Photocatalytic Reactors , 2009 .

[117]  Y. Shimizu,et al.  Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2 , 1999 .

[118]  Y. Shimizu,et al.  Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger , 1998 .

[119]  A. Beenackers,et al.  Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation , 2001 .

[120]  A. Kotarba,et al.  Preparation, characterization and photocatalytic properties of cerium doped TiO2: On the effect of Ce loading on the photocatalytic reduction of carbon dioxide , 2014 .

[121]  Lei Tian,et al.  Synergistic Effect of N and Ni2+ on Nanotitania in Photocatalytic Reduction of CO2 , 2011 .

[122]  Tsunehiro Tanaka,et al.  Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst , 2008 .

[123]  Lianzhou Wang,et al.  Titania-based photocatalysts—crystal growth, doping and heterostructuring , 2010 .

[124]  Edmund G Seebauer,et al.  Charged Semiconductor Defects: Structure, Thermodynamics and Diffusion , 2008 .

[125]  John P. Baltrus,et al.  Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts , 2009 .

[126]  Damon Honnery,et al.  Mitigating greenhouse : Limited time, limited options , 2008 .

[127]  D. Serrano,et al.  Enhancement of hydrocarbon production via artificial photosynthesis due to synergetic effect of Ag supported on TiO2 and ZnO semiconductors , 2013 .

[128]  Ye Wang,et al.  Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. , 2013, Physical chemistry chemical physics : PCCP.

[129]  A. Mohamed,et al.  Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane , 2014 .

[130]  Lianjun Liu,et al.  Porous microspheres of MgO-patched TiO2 for CO2 photoreduction with H2O vapor: temperature-dependent activity and stability. , 2013, Chemical communications.

[131]  Guohua Chen,et al.  Electrochemistry for the Environment , 2010 .

[132]  Kenichi Suzuki,et al.  Visible-light-induced photocatalytic oxidation of carboxylic acids and aldehydes over N-doped TiO2 loaded with Fe, Cu or Pt , 2008 .

[133]  D. Neamen Semiconductor physics and devices , 1992 .

[134]  A. Kudo,et al.  Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. , 2011, Journal of the American Chemical Society.

[135]  M. Romero,et al.  Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts , 1999 .

[136]  J. Wu,et al.  Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process , 2001 .

[137]  Chang-Tang Chang,et al.  Photoreduction of carbon dioxide by graphene-titania and zeolite-titania composites under low-intensity irradiation , 2015 .

[138]  H. Shon,et al.  Visible Light Responsive Titanium Dioxide (TiO 2 ) , 2008 .

[139]  G. Marcì,et al.  Photocatalytic CO2 reduction in gas–solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light , 2014 .

[140]  C. Saint,et al.  Recent developments in photocatalytic water treatment technology: a review. , 2010, Water research.

[141]  G. Guan,et al.  Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight , 2003 .

[142]  Turner,et al.  A realizable renewable energy future , 1999, Science.

[143]  B. Claudel,et al.  On the “immobilization” of titanium dioxide in the photocatalytic oxidation of spent waters , 1995 .

[144]  H. Fu,et al.  Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts , 2007 .

[145]  Andrew Mills,et al.  An overview of semiconductor photocatalysis , 1997 .

[146]  Elias Stathatos,et al.  Pure versus metal-ion-doped nanocrystalline titania for photocatalysis , 2007 .

[147]  K. Schulte,et al.  Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light , 2010 .

[148]  Xia Yang,et al.  Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: new efficient photocatalyst for dye degradation. , 2010, Journal of hazardous materials.

[149]  Muhammad Tahir,et al.  Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4 , 2015 .

[150]  Arghya Narayan Banerjee,et al.  The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. , 2011, Nanotechnology, science and applications.

[151]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[152]  Eric Hu,et al.  Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets , 2006 .

[153]  J. Bockris Would methanol formed from CO2 from the atmosphere give the advantage of hydrogen at lesser cost , 2010 .

[154]  M. Maroto-Valer,et al.  Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst , 2014 .

[155]  Pratim Biswas,et al.  Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity , 2002 .

[156]  S. Hecht,et al.  Sensitized photocatalytical oxidation of terbutylazine , 1994 .

[157]  Hyunwoong Park,et al.  Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone , 2001 .

[158]  Ying Li,et al.  Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor , 2012 .

[159]  A. Corma,et al.  Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids , 2012 .

[160]  Li Xue,et al.  Preparation of C Doped TiO2 Photocatalysts and their Photocatalytic Reduction of Carbon Dioxide , 2011 .

[161]  L. Wen,et al.  Doped-TiO2 Photocatalysts and Synthesis Methods to Prepare TiO2 Films , 2009 .

[162]  J. Wu,et al.  Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight , 2008 .

[163]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[164]  Julián Blanco,et al.  Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends , 2009 .

[165]  M. Aresta,et al.  Utilisation of CO2 as a chemical feedstock: opportunities and challenges. , 2007, Dalton transactions.

[166]  M. Maroto-Valer,et al.  Copper based TiO2 honeycomb monoliths for CO2 photoreduction , 2014 .

[167]  Ajay K. Ray,et al.  Development of a new photocatalytic reactor for water purification , 1998 .

[168]  Chen Li,et al.  Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films , 2014 .

[169]  E. Seebauer,et al.  Charged Semiconductor Defects , 2009 .

[170]  M. Bouchy,et al.  Kinetics of atrazine degradation by photocatalytic process in aqueous solution , 2003 .

[171]  B. Michalkiewicz,et al.  Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst , 2014 .

[172]  Fernando Colmenares,et al.  Nanostructured Photocatalysts and Their Applications in the Photocatalytic Transformation of Lignocellulosic Biomass: An Overview , 2009, Materials.

[173]  Osamu Ishitani,et al.  Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2 , 1993 .

[174]  H. Jakobsen,et al.  Engineering TiO2 nanomaterials for CO2 conversion/solar fuels , 2012 .

[175]  Chunshan Song Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing , 2006 .

[176]  Shaohua Liu,et al.  Optimal design and preparation of titania-supported CoPc using sol―gel for the photo-reduction of CO2 , 2009 .

[177]  D. Ollis,et al.  Photoassisted heterogeneous catalysis with optical fibers: I. Isolated single fiber , 1977 .

[178]  R. Ullah,et al.  Strategies of making TiO2 and ZnO visible light active. , 2009, Journal of hazardous materials.

[179]  K. Ohta,et al.  Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions , 1996 .

[180]  Pratim Biswas,et al.  Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts , 2010 .

[181]  M. Liang,et al.  Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film , 2013 .

[182]  Hai-chao Liang,et al.  Photocatalytical Properties of TiO2 Nanotubes , 2010 .

[183]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[184]  J. Moulijn,et al.  A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis , 2008 .

[185]  H. Bai,et al.  Photocatalytic Reduction of CO2 Using Ti–MCM-41 Photocatalysts in Monoethanolamine Solution for Methane Production , 2014 .

[186]  O. Ishitani,et al.  Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates on TiO₂ and deposition of Pd onto TiO₂. , 2011, ACS applied materials & interfaces.

[187]  Lucie Obalová,et al.  Effect of TiO2 particle size on the photocatalytic reduction of CO2 , 2009 .

[188]  B. Viswanathan,et al.  Photocatalytic Reduction of Carbon Dioxide by Water: A Step towards Sustainable Fuels and Chemicals , 2012 .

[189]  K. Kočí,et al.  EFFECT OF TEMPERATURE, PRESSURE AND VOLUME OF REACTING PHASE ON PHOTOCATALYTIC CO2 REDUCTION ON SUSPENDED NANOCRYSTALLINE TiO2 , 2008 .

[190]  M. Tripathi,et al.  A review of TiO2 nanoparticles , 2011 .

[191]  John L. Bradshaw,et al.  CO2 storage capacity estimation: Methodology and gaps , 2007 .

[192]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[193]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[194]  R. Amal,et al.  Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis , 2004 .

[195]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[196]  Somnath C. Roy,et al.  Solar Spectrum Photocatalytic Conversion of CO2 and Water Vapor Into Hydrocarbons Using TiO2 Nanoparticle Membranes , 2014 .

[197]  F. Saladin,et al.  Temperature dependence of the photochemical reduction of CO2in the presence of H2Oat the solid/gas interface of TiO2 , 1997 .

[198]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[199]  Paitoon Tontiwachwuthikul,et al.  Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams , 2006 .

[200]  G. Guan,et al.  Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst , 2003 .

[201]  A. K. Ray,et al.  Effect of mass transfer and catalyst layer thickness on photocatalytic reaction , 2000 .

[202]  G. L. Puma,et al.  Radiation field optimization in photocatalytic monolith reactors for air treatment , 2007 .

[203]  N. Sasirekha,et al.  Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide , 2006 .

[204]  E. Liu,et al.  Photoconversion of CO2 to methanol over plasmonic Ag/TiO2 nano-wire films enhanced by overlapped visible-light-harvesting nanostructures , 2015 .

[205]  Tsunehiro Tanaka,et al.  Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2 , 2000 .

[206]  Donald A. Neamen Zhu Semiconductor physics and devices basic principles , 1991 .

[207]  Rodrigo J. G. Lopes,et al.  RETRACTED: Manganese- and copper-doped titania nanocomposites for the photocatalytic reduction of carbon dioxide into methanol , 2012 .

[208]  Feng Xin,et al.  Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. , 2011, Journal of colloid and interface science.

[209]  V. Matějka,et al.  Sol-gel derived Pd supported TiO2-ZrO2 and TiO2 photocatalysts; their examination in photocatalytic reduction of carbon dioxide , 2014 .

[210]  M. Xing,et al.  Highly-dispersed Boron-doped Graphene Nanosheets Loaded with TiO2 Nanoparticles for Enhancing CO2 Photoreduction , 2014, Scientific Reports.

[211]  N. Dimitrijević,et al.  Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes , 2010 .

[212]  Annabella Selloni,et al.  Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[213]  A. Di Paola,et al.  Photocatalytic behaviour of metal-loaded TiO2 aqueous dispersions and films , 2007 .

[214]  Suraya Abdul Rashid,et al.  Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review , 2010 .

[215]  N. S. Amin,et al.  Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor , 2015 .

[216]  Hongfei Lin,et al.  An optical fiber monolith reactor for photocatalytic wastewater treatment , 2006 .

[217]  Jim Euchner Design , 2014, Catalysis from A to Z.

[218]  K. Kočí,et al.  Photocatalytic reduction of CO2 over TiO2 based catalysts , 2008 .

[219]  Zahira Yaakob,et al.  An Enthusiastic Glance in to the Visible Responsive Photocatalysts for Energy Production and Pollutant Removal, with Special Emphasis on Titania , 2012 .

[220]  Yueping Fang,et al.  Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation , 2012 .

[221]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[222]  Qi Li,et al.  Enhanced Visible‐Light Photocatalytic Degradation of Humic Acid by Palladium‐Modified Nitrogen‐Doped Titanium Oxide , 2007 .

[223]  J. Limtrakul,et al.  Role of chlorophyll in Spirulina on photocatalytic activity of CO2 reduction under visible light over modified N-doped TiO2 photocatalysts , 2015 .

[224]  Gregory B. Raupp,et al.  Three‐dimensional developing flow model for photocatalytic monolith reactors , 1999 .

[225]  T. Ohno,et al.  Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light , 2014 .

[226]  R. Howe Recent Developments in Photocatalysis , 2008 .

[227]  Din Ping Tsai,et al.  CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy , 2010 .

[228]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[229]  Toshiki Tsubota,et al.  Photocatalytic reduction of CO2 over exposed-crystal-face-controlled TiO2 nanorod having a brookite phase with co-catalyst loading , 2014 .

[230]  P. Biswas,et al.  Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor , 2011, Nanoscale research letters.

[231]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[232]  Jingjing Xu,et al.  Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light , 2008 .

[233]  Y. Liu,et al.  Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity , 2015 .

[234]  M. Graetzel,et al.  Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. , 2010, Current opinion in biotechnology.

[235]  Yajun Wang,et al.  Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO , 2014 .

[236]  Yuichi Ichihashi,et al.  The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method , 2001 .

[237]  K. Warrier,et al.  Nanoporous titania–alumina mixed oxides—an alkoxide free sol–gel synthesis , 2004 .

[238]  Hyunwoong Park,et al.  Effects of TiO2 surface fluorination on photocatalytic degradation of methylene blue and humic acid , 2010 .

[239]  R. Amal,et al.  Role of Nanoparticles in Photocatalysis , 1999 .

[240]  E. Akkaya,et al.  Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation , 2007 .

[241]  K. Asai,et al.  Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations , 2002 .

[242]  T. White,et al.  Low-temperature synthesis and microstructural control of titania nano-particles , 2004 .

[243]  J. Wu Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel , 2009 .

[244]  J. Wu,et al.  Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier , 2008 .

[245]  M. Hirota,et al.  CO2 reforming into fuel using TiO2 photocatalyst and gas separation membrane , 2009 .

[246]  N. Jaffrezic‐Renault,et al.  Characterization and study of a single-TiO2-coated optical fiber reactor , 2004 .

[247]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[248]  M. Maroto-Valer,et al.  Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation , 2012 .

[249]  Ajay K. Ray,et al.  Design, modelling and experimentation of a new large-scale photocatalytic reactor for water treatment , 1999 .

[250]  H. Yano,et al.  Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution , 2002 .

[251]  Chang-Tang Chang,et al.  Photocatalytic reduction of CO2 to energy products using Cu–TiO2/ZSM-5 and Co–TiO2/ZSM-5 under low energy irradiation , 2015 .

[252]  N. Amin,et al.  Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor , 2013 .

[253]  J. Baek,et al.  Methane formation from photoreduction of CO2 with water using TiO2 including Ni ingredient , 2015 .

[254]  Phil Mestecky,et al.  What is materials chemistry , 1998 .

[255]  J. Wu,et al.  Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor , 2015 .

[256]  Ya‐Ping Sun,et al.  Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction , 2005 .

[257]  Tsunehiro Tanaka,et al.  Photocatalytic conversion of CO2 in water over layered double hydroxides. , 2012, Angewandte Chemie.

[258]  G. Ciccarella,et al.  Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 samples impregnated with Cu(II)-phthalocyanine , 2002 .

[259]  F. Saladin,et al.  Photosynthesis of CH4 at a TiO2 surface from gaseous H2O and CO2 , 1995 .

[260]  V. M. Granchak,et al.  Photocatalytic Reduction of Carbon Dioxide by Water Vapor on Mesoporous Titania Modified by Bimetallic Au/Cu Nanostructures , 2014, Theoretical and Experimental Chemistry.

[261]  Toshiki Tsubota,et al.  Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride , 2013 .

[262]  Chun He,et al.  Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light , 2011 .

[263]  Jackie Y. Ying,et al.  Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals , 1999 .

[264]  Hongfei Lin,et al.  Development of an optical fiber monolith reactor for photocatalytic wastewater Treatment , 2005 .

[265]  Nick Serpone,et al.  Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations , 1994 .

[266]  S. Sharifnia,et al.  Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet , 2013 .

[267]  Charles C. Sorrell,et al.  Review of the anatase to rutile phase transformation , 2011 .

[268]  A. Fujishima,et al.  TiO2 photocatalysis: Design and applications , 2012 .

[269]  Hung-Ming Lin,et al.  Photo reduction of CO2 to methanol via TiO2 photocatalyst , 2005 .

[271]  M. Anpo,et al.  Photocatalytic Reduction of CO2 with H2O on Ti−β Zeolite Photocatalysts: Effect of the Hydrophobic and Hydrophilic Properties , 2001 .

[272]  R. Ameta,et al.  Photocatalytic Reduction of Carbon Dioxide , 2013 .

[273]  W. Hou,et al.  CeF3/TiO2 composite as a novel visible-light-driven photocatalyst based on upconversion emission and its application for photocatalytic reduction of CO2 , 2014 .

[274]  Nunzio Russo,et al.  Nanostructured TiO2/KIT-6 catalysts for improved photocatalytic reduction of CO2 to tunable energy products , 2015 .

[275]  A. Banerjee,et al.  The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO 2 -based nanostructures , 2011 .

[276]  M. Schiavello Some working principles of heterogeneous photocatalysis by semiconductors , 1993 .

[277]  Muhammad Tahir,et al.  Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor , 2013 .

[278]  L. Guczi,et al.  Catalysis for Alternative Energy Generation , 2012 .

[279]  M. Anpo Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocatalysts Able to Operate under UV—Visible Light Irradiation: Approaches in Realizing High Efficiency in the Use of Visible Light , 2004 .

[280]  Hung-Ming Lin,et al.  Photo reduction of CO2 to methanol using optical-fiber photoreactor , 2005 .

[281]  V. Karakoussis,et al.  The European and global potential of carbon dioxide sequestration in tackling climate change , 2001 .

[282]  Ruifeng Li,et al.  Effect of heating temperature on photocatalytic reduction of CO2 by N–TiO2 nanotube catalyst , 2012 .

[283]  J. Barber,et al.  Recent advances in hybrid photocatalysts for solar fuel production , 2012 .

[284]  L. Jia,et al.  Enhanced visible-light active C and Fe co-doped LaCoO3 for reduction of carbon dioxide , 2009 .