A variant of Mathias forcing that preserves $${\mathsf{ACA}_0}$$
暂无分享,去创建一个
[1] Theodore A. Slaman,et al. On the Strength of Ramsey's Theorem , 1995, Notre Dame J. Formal Log..
[2] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[3] Krzysztof Mazur,et al. $F_σ$-ideals and $ω_1 ω^*_1$-gaps in the Boolean algebras Ρ(ω)/I. , 1991 .
[4] Denis R. Hirschfeldt,et al. Combinatorial principles weaker than Ramsey's Theorem for pairs , 2007, J. Symb. Log..
[5] James E. Baumgartner,et al. Surveys in set theory: ITERATED FORCING , 1983 .
[6] Carl G. Jockusch,et al. Ramsey's theorem and cone avoidance , 2009, J. Symb. Log..
[7] U. Kohlenbach. Higher Order Reverse Mathematics , 2000 .
[8] Andreas Blass,et al. Needed reals and recursion in generic reals , 2001, Ann. Pure Appl. Log..
[9] Carl G. Jockusch,et al. On the strength of Ramsey's theorem for pairs , 2001, Journal of Symbolic Logic.
[10] Erik Ellentuck,et al. A new proof that analytic sets are Ramsey , 1974, Journal of Symbolic Logic.