New efficient residue-to-binary converters for 4-moduli set {2/sup n/ - 1, 2/sup n/, 2/sup n/ + 1, 2/sup n+1/ - 1}
暂无分享,去创建一个
[1] T. Srikanthan,et al. Breaking the 2n-bit carry propagation barrier in residue to binary conversion for the [2/sup n/-1, 2/sup n/, 2/sup n/+1] modula set , 1998 .
[2] A. Benjamin Premkumar,et al. A Memoryless Reverse Converter for the 4-Moduli Superset {2n-1, 2n, 2n+1, 2n+1-1} , 2000, J. Circuits Syst. Comput..
[3] Richard I. Tanaka,et al. Residue arithmetic and its applications to computer technology , 1967 .
[4] Michael A. Soderstrand,et al. Residue number system arithmetic: modern applications in digital signal processing , 1986 .
[5] Hong Shen,et al. Adder based residue to binary number converters for (2n-1, 2n, 2n+1) , 2002, IEEE Trans. Signal Process..
[6] S. Piestrak. A high-speed realization of a residue to binary number system converter , 1995 .
[7] Stanislaw J. Piestrak. Design of Residue Generators and Multioperand Modular Adders Using Carry-Save Adders , 1994, IEEE Trans. Computers.
[8] A. P. Vinod. A MEMORYLESS REVERSE CONVERTER FOR THE 4-MODULI SUPERSET {2n - 1, 2n, 2n + 1, 2n + 1 - 1} , 2000 .
[9] W. R. Moore,et al. Improved mixed-radix conversion for residue number system architectures , 1991 .
[10] K. Elleithy,et al. Fast and flexible architectures for RNS arithmetic decoding , 1992 .