Spectral Compressed Sensing via Projected Gradient Descent

Let $x\in\mathbb{C}^n$ be a spectrally sparse signal consisting of $r$ complex sinusoids with or without damping. We consider the spectral compressed sensing problem, which is about reconstructing $x$ from its partial revealed entries. By utilizing the low rank structure of the Hankel matrix corresponding to $x$, we develop a computationally efficient algorithm for this problem. The algorithm starts from an initial guess computed via one-step hard thresholding followed by projection, and then proceeds by applying projected gradient descent iterations to a non-convex functional. Based on the sampling with replacement model, we prove that $O(r^2\log(n))$ observed entries are sufficient for our algorithm to achieve the successful recovery of a spectrally sparse signal. Moreover, extensive empirical performance comparisons show that our algorithm is competitive with other state-of-the-art spectral compressed sensing algorithms in terms of phase transitions and overall computational time.

[1]  Di Guo,et al.  Hankel Matrix Nuclear Norm Regularized Tensor Completion for $N$-dimensional Exponential Signals , 2016, IEEE Transactions on Signal Processing.

[2]  Jared Tanner,et al.  Conjugate Gradient Iterative Hard Thresholding: Observed Noise Stability for Compressed Sensing , 2015, IEEE Transactions on Signal Processing.

[3]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[4]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[5]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[6]  Tengyu Ma,et al.  Matrix Completion has No Spurious Local Minimum , 2016, NIPS.

[7]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.

[8]  Furong Huang,et al.  Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition , 2015, COLT.

[9]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2010, IEEE Transactions on Signal Processing.

[10]  John D. Lafferty,et al.  A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements , 2015, NIPS.

[11]  Weiyu Xu,et al.  Robust recovery of complex exponential signals from random Gaussian projections via low rank Hankel matrix reconstruction , 2015, Applied and computational harmonic analysis.

[12]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[13]  Wenjing Liao,et al.  MUSIC for Multidimensional Spectral Estimation: Stability and Super-Resolution , 2015, IEEE Transactions on Signal Processing.

[14]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, ISIT.

[15]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[16]  Wenjing Liao,et al.  MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-resolution , 2014, ArXiv.

[17]  Jian-Feng Cai,et al.  Accelerated NMR spectroscopy with low-rank reconstruction. , 2015, Angewandte Chemie.

[18]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[19]  Thomas Strohmer,et al.  General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.

[20]  Weiyu Xu,et al.  A fast algorithm for reconstruction of spectrally sparse signals in super-resolution , 2015, SPIE Optical Engineering + Applications.

[21]  Paul Tseng,et al.  Hankel Matrix Rank Minimization with Applications to System Identification and Realization , 2013, SIAM J. Matrix Anal. Appl..

[22]  U. Feige,et al.  Spectral techniques applied to sparse random graphs , 2005 .

[23]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[24]  Jeffrey D. Blanchard,et al.  CGIHT: Conjugate Gradient Iterative Hard Thresholding for Compressed Sensing and Matrix Completion , 2015 .

[25]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[26]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[27]  Tony F. Chan,et al.  Guarantees of Riemannian Optimization for Low Rank Matrix Recovery , 2015, SIAM J. Matrix Anal. Appl..

[28]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[29]  Anastasios Kyrillidis,et al.  Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach , 2016, AISTATS.

[30]  T. Chan,et al.  Guarantees of riemannian optimization for low rank matrix completion , 2016, Inverse Problems & Imaging.

[31]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[32]  Nathan Srebro,et al.  Global Optimality of Local Search for Low Rank Matrix Recovery , 2016, NIPS.

[33]  L. Mirsky A trace inequality of John von Neumann , 1975 .

[34]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[35]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[36]  Emre Ertin,et al.  Sparsity and Compressed Sensing in Radar Imaging , 2010, Proceedings of the IEEE.

[37]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[38]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[39]  Martin J. Wainwright,et al.  Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.

[40]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[41]  Jian-Feng Cai,et al.  Fast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion , 2016, Applied and Computational Harmonic Analysis.

[42]  Yi Zheng,et al.  No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis , 2017, ICML.

[43]  Mike E. Davies,et al.  Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance , 2010, IEEE Journal of Selected Topics in Signal Processing.

[44]  John D. Lafferty,et al.  Convergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro Factorization and Gradient Descent , 2016, ArXiv.

[45]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[46]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[47]  Xiaodong Li,et al.  Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization , 2016, Applied and Computational Harmonic Analysis.

[48]  Yuanying Chen,et al.  Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary , 2023, bioRxiv.