Cu-Sb dumbbell arrangement in the spin-orbital liquid candidate Ba3CuSb2O9
暂无分享,去创建一个
[1] Daisuke Nakajima,et al. Chemical and orbital fluctuations in Ba 3 CuSb 2 O 9 , 2016 .
[2] R. Valentí,et al. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales , 2016, 1603.02548.
[3] F. Mila,et al. Topological Aspects of Symmetry Breaking in Triangular-Lattice Ising Antiferromagnets. , 2016, Physical review letters.
[4] R. Valentí,et al. Monoclinic crystal structure of α − RuCl 3 and the zigzag antiferromagnetic ground state , 2015, 1509.02670.
[5] F. Mila,et al. Disorder-Driven Spin-Orbital Liquid Behavior in the Ba3XSb2O9 Materials. , 2015, Physical review letters.
[6] F. Mila,et al. Exploring the spin-orbital ground state of Ba 3 CuSb 2 O 9 , 2014, 1406.7605.
[7] S. Ishihara,et al. Absence of Jahn−Teller transition in the hexagonal Ba3CuSb2O9 single crystal , 2014, Proceedings of the National Academy of Sciences.
[8] H. Takagi,et al. Hyperhoneycomb Iridate β-Li2IrO3 as a platform for Kitaev magnetism. , 2014, Physical review letters.
[9] K. V. Shanavas,et al. Electronic structure ofBa3CuSb2O9: A candidate quantum spin liquid compound , 2014 .
[10] T. Smidt,et al. Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate , 2014, Nature Communications.
[11] A. Baron,et al. Dynamical spin–orbital correlation in the frustrated magnet Ba3CuSb2O9 , 2013, Nature Communications.
[12] P. Mendels,et al. Singlet ground state of the quantum antiferromagnet Ba(3)CuSb(2)O(9). , 2012, Physical review letters.
[13] F. Mila,et al. 28pAK-16 Spin-Orbital Quantum Liquid on the Honeycomb Lattice , 2012, 1207.6029.
[14] S. Ishihara,et al. Dynamical Jahn-Teller effect in a spin-orbital coupled system , 2012, 1209.0239.
[15] G. Jackeli,et al. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.
[16] S. Korshunov. Nature of phase transitions in the striped phase of a triangular-lattice Ising antiferromagnet , 2005, cond-mat/0506722.
[17] Y. Shimizu,et al. Spin liquid state in an organic Mott insulator with a triangular lattice. , 2003, Physical review letters.
[18] G. Scuseria,et al. Hybrid functionals based on a screened Coulomb potential , 2003 .
[19] D. Khomskii,et al. Orbital ordering and frustrations , 2003, cond-mat/0304089.
[20] G. Khaliullin,et al. Orbital liquid in three-dimensional mott insulator: LaTiO3 , 2000, Physical review letters.
[21] Helmut Eschrig,et al. FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .
[22] C. Humphreys,et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .
[23] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[24] N. Nagaosa,et al. Orbital liquid in perovskite transition-metal oxides , 1996, cond-mat/9606160.
[25] Hafner,et al. Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.
[26] Henk W. J. Blöte,et al. Triangular SOS models and cubic-crystal shapes , 1984 .
[27] L. Balicas,et al. Spin Liquid State in the S=1/2 Triangular Lattice Ba_{3}CuSb_{2}O_{9} , 2014 .
[28] R. Deblock,et al. Observation of the Orbital Quantum Dynamics in the Spin-1 / 2 Hexagonal Antiferromagnet Ba 3 CuSb 2 O 9 , 2022 .