Modeling of microdischarge devices: Pyramidal structures

Microdischarge (MD) devices are plasma sources typically operating at 100s Torr to atmospheric pressure with dimensions of 10s–100s μm. Their design in based on pd (pressure×characteristic dimension) scaling; smaller dimensions are enabled by higher operating pressures with typical devices operating with pd=1–10 Torr cm. MD devices have exhibited behavior that resemble both Townsend and hollow-cathode discharges, with bulk and beam electrons providing the dominant excitation, respectively. In this article, results from a two-dimensional computational study of MD devices operating in neon using a pyramidal cathode structure are discussed. Pressures of 400–1000 Torr and device dimensions of 15–40 μm are investigated. The onset of behavior resembling negative glow discharges with decreasing pressure correlates with an extension of cathode fall accelerated beam electrons into the bulk plasma. For constant applied voltage, peak electron densities increase with increasing pressure as the beam electrons are slow...

[1]  James Gary Eden,et al.  Development and characterization of micromachined hollow cathode plasma display devices , 2002 .

[2]  E. Krishnakumar,et al.  Ionisation cross sections of rare-gas atoms by electron impact , 1988 .

[3]  George Bekefi,et al.  Principles of laser plasmas , 1976 .

[4]  T. Detemple,et al.  Microdischarge devices fabricated in silicon , 1997 .

[5]  Shahid Rauf,et al.  Breakdown processes in metal halide lamps , 2003 .

[6]  K. Schoenbach,et al.  Direct current glow discharges in atmospheric air , 1999 .

[7]  M. Obara,et al.  Theoretical analysis of efficiency scaling laws for a self‐sustained discharge pumped XeCl laser , 1986 .

[8]  G. Piech,et al.  Measurement of electron-impact excitation cross sections out of the neon ^{3}P_{2} metastable level , 2001 .

[9]  M. Cappelli,et al.  Parametric study of the vacuum ultraviolet emission and electrical characteristics of a He–Xe microdischarge , 2001 .

[10]  C. Penache,et al.  Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy , 2002 .

[11]  J. Chen,et al.  Arrays of silicon microdischarge devices with multicomponent dielectrics. , 2001, Optics letters.

[12]  J. Eden,et al.  Performance of microdischarge devices and arrays with screen electrodes , 2001, IEEE Photonics Technology Letters.

[13]  S. Trajmar,et al.  Ionization of metastable neon by electron impact , 1996 .

[14]  Edward A. Mason,et al.  Transport Properties of Gaseous Ions over a Wide Energy Range , 1976 .

[15]  L. Vriens CALCULATION OF ABSOLUTE IONISATION CROSS SECTIONS OF He, He*, He +, Ne, Ne*, Ne +, Ar, Ar*, Hg and Hg* , 1964 .

[16]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[17]  Karl H. Schoenbach,et al.  High-pressure hollow cathode discharges , 1997 .

[18]  K. Schoenbach,et al.  Series operation of direct current xenon chloride excimer sources , 2000 .

[19]  Anderson,et al.  Electron excitation cross sections for the metastable and resonant levels of Ne(2p53s). , 1985, Physical review. A, General physics.

[20]  J. E. Chilton,et al.  Electron-impact excitation cross sections of neon , 2000 .

[21]  S. Rauf,et al.  Dynamics of a coplanar-electrode plasma display panel cell. I. Basic operation , 1999 .

[22]  Clark J. Wagner,et al.  Microdischarge arrays: a new family of photonic devices (revised*) , 2002 .

[23]  D. Uhrlandt,et al.  Study of a neon dc column plasma by a hybrid method , 2002 .

[24]  M. Kushner,et al.  Noncollisional heating and electron energy distributions in magnetically enhanced inductively coupled and helicon plasma sources , 2001 .

[25]  F. Bastien,et al.  Electrical breakdown in gases , 1977, Digest of Literature on Dielectrics, Volume 41, 1977.

[26]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[27]  J. Boeuf Plasma display panels: physics, recent developments and key issues , 2003 .