Some properties on quadratic infinite programs of integral type
暂无分享,去创建一个
[1] Kok Lay Teo,et al. An Adaptive Dual Parametrization Algorithm for Quadratic Semi-infinite Programming Problems , 2002, J. Glob. Optim..
[2] Hussein Baher,et al. Analog & digital signal processing , 1990 .
[3] M. Sanguineti,et al. Approximating Networks and Extended Ritz Method for the Solution of Functional Optimization Problems , 2002 .
[4] H. Sherali. Dorn's duality for quadratic programs revisited: The nonconvex case , 1993 .
[5] Ingvar Claesson,et al. A semi-infinite quadratic programming algorithm with applications to array pattern synthesis , 2001 .
[6] Kok Lay Teo,et al. A New Quadratic Semi-infinite Programming Algorithm Based on Dual Parametrization , 2004, J. Glob. Optim..
[7] R. Reemtsen,et al. Semi‐Infinite Programming , 1998 .
[8] S. Y. Wu,et al. Extremal points and optimal solutions for general capacity problems , 1992, Math. Program..
[9] M. Ohtsuka. Generalized capacity and duality theorem in linear programming , 1966 .
[10] S. Y. Wu,et al. A Cutting Plane Approach to Solving Quadratic Infinite Programs on Measure Spaces , 2001, J. Glob. Optim..
[11] O. SIAMJ.,et al. Error Estimates for Approximate Optimization by the Extended Ritz Method , 2005, SIAM J. Optim..
[12] Kok Lay Teo,et al. A unified quadratic semi-infinite programming approach to time and frequency domain constrained digital filter design , 2002, Commun. Inf. Syst..
[13] Rembert Reemtsen,et al. Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .
[14] A mathematical programming problem with singular mixed pointwise-integral constraints , 2005 .
[15] Shu-Cherng Fang,et al. Solving convex programs with infinitely many linear constraints by a relaxed cutting plane method , 1999 .
[16] Onésimo Hernández-Lerma,et al. Approximation Schemes for Infinite Linear Programs , 1998, SIAM J. Optim..
[17] Kok Lay Teo,et al. A dual parameterization approach to linear-quadratic semi-infinite programming problems , 1999 .
[18] Kok Lay Teo,et al. A Dual Parametrization Method for Convex Semi-Infinite Programming , 2000, Ann. Oper. Res..
[19] Kok Lay Teo,et al. Global Optimization in Quadratic Semi-Infinite Programming , 2001 .