Some properties on quadratic infinite programs of integral type

In this work, we investigate the properties of a class of quadratic infinite programs where the objective is a quadratic functional of integral type and the feasible region is a subset of the infinite dimensional space L p ([0,1]). We first derive a dual problem of the primal problem to demonstrate that there is no duality gap between them. Then we prove that the objective function depends continuously on the design function. Two existence theorems for this kind of optimization problem are presented. These theoretical results may prove useful in the design of efficient algorithms for this class of infinite programming problem. c 2006 Elsevier Ltd. All rights reserved.

[1]  Kok Lay Teo,et al.  An Adaptive Dual Parametrization Algorithm for Quadratic Semi-infinite Programming Problems , 2002, J. Glob. Optim..

[2]  Hussein Baher,et al.  Analog & digital signal processing , 1990 .

[3]  M. Sanguineti,et al.  Approximating Networks and Extended Ritz Method for the Solution of Functional Optimization Problems , 2002 .

[4]  H. Sherali Dorn's duality for quadratic programs revisited: The nonconvex case , 1993 .

[5]  Ingvar Claesson,et al.  A semi-infinite quadratic programming algorithm with applications to array pattern synthesis , 2001 .

[6]  Kok Lay Teo,et al.  A New Quadratic Semi-infinite Programming Algorithm Based on Dual Parametrization , 2004, J. Glob. Optim..

[7]  R. Reemtsen,et al.  Semi‐Infinite Programming , 1998 .

[8]  S. Y. Wu,et al.  Extremal points and optimal solutions for general capacity problems , 1992, Math. Program..

[9]  M. Ohtsuka Generalized capacity and duality theorem in linear programming , 1966 .

[10]  S. Y. Wu,et al.  A Cutting Plane Approach to Solving Quadratic Infinite Programs on Measure Spaces , 2001, J. Glob. Optim..

[11]  O. SIAMJ.,et al.  Error Estimates for Approximate Optimization by the Extended Ritz Method , 2005, SIAM J. Optim..

[12]  Kok Lay Teo,et al.  A unified quadratic semi-infinite programming approach to time and frequency domain constrained digital filter design , 2002, Commun. Inf. Syst..

[13]  Rembert Reemtsen,et al.  Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .

[14]  A mathematical programming problem with singular mixed pointwise-integral constraints , 2005 .

[15]  Shu-Cherng Fang,et al.  Solving convex programs with infinitely many linear constraints by a relaxed cutting plane method , 1999 .

[16]  Onésimo Hernández-Lerma,et al.  Approximation Schemes for Infinite Linear Programs , 1998, SIAM J. Optim..

[17]  Kok Lay Teo,et al.  A dual parameterization approach to linear-quadratic semi-infinite programming problems , 1999 .

[18]  Kok Lay Teo,et al.  A Dual Parametrization Method for Convex Semi-Infinite Programming , 2000, Ann. Oper. Res..

[19]  Kok Lay Teo,et al.  Global Optimization in Quadratic Semi-Infinite Programming , 2001 .