Hybrid particle swarm optimizer with mass extinction

A hybrid particle swarm optimizer with mass extinction, which has been suggested to be an important mechanism for evolutionary progress in the biological world, is presented to enhance the capacity in reaching an optimal solution. The tested results of three benchmark functions indicate this method improves the performance effectively.

[1]  Ricard V. Solé,et al.  Evolutionary optimization through extinction dynamics , 1999 .

[2]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[3]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[4]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[5]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[6]  E. Wilson,et al.  Sociobiology: The New Synthesis , 1975 .

[7]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[8]  T. Krink,et al.  Self-organized criticality and mass extinction in evolutionary algorithms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[9]  J. Kennedy,et al.  Stereotyping: improving particle swarm performance with cluster analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[10]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[11]  Charles R. Marshall Palaeobiology: Mass extinction probed , 1998, Nature.

[12]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[13]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[14]  Per Bak,et al.  How Nature Works , 1996 .

[15]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[16]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  Garrison W. Greenwood,et al.  Evolutionary computation with extinction: experiments and analysis , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[18]  Christopher G. Langton,et al.  Artificial Life III , 2000 .

[19]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).