Square $\boldsymbol{q,t}$-lattice paths and $\boldsymbol{\nabla(p_n)}$

The combinatorial q,t-Catalan numbers are weighted sums of Dyck paths introduced by J. Haglund and studied extensively by Haglund, Haiman, Garsia, Loehr, and others. The q,t-Catalan numbers, besides having many subtle combinatorial properties, are intimately connected to symmetric functions, algebraic geometry, and Macdonald polynomials. In particular, the n'th q,t-Catalan number is the Hilbert series for the module of diagonal harmonic alternants in 2n variables; it is also the coefficient of s 1 n in the Schur expansion of ∇(e n ). Using q,t-analogues of labelled Dyck paths, Haglund et al. have proposed combinatorial conjectures for the monomial expansion of ∇(e n ) and the Hilbert series of the diagonal harmonics modules. This article extends the combinatorial constructions of Haglund et al. to the case of lattice paths contained in squares. We define and study several q,t-analogues of these lattice paths, proving combinatorial facts that closely parallel corresponding results for the q,t-Catalan polynomials. We also conjecture.an interpretation of our combinatorial polynomials in terms of the nabla operator. In particular, we conjecture combinatorial formulas for the monomial expansion of ∇(p n ), the "Hilbert series" (∇(p n ), h 1 n), and the sign character (∇(p n ),s 1 n).

[1]  J. B. Remmel,et al.  A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.

[2]  Nicholas A. Loehr,et al.  A combinatorial formula for Macdonald polynomials , 2005 .

[3]  J. Haglund A proof of the q,t-Schröder conjecture , 2004 .

[4]  François Bergeron,et al.  Identities and Positivity Conjectures for some remarkable Operators in the Theory of Symmetric Functions , 1999 .

[5]  James Haglund,et al.  A Schröder Generalization of Haglund's Statistic on Catalan Paths , 2003, Electron. J. Comb..

[6]  F. Bergeron,et al.  Science Fiction and Macdonald's Polynomials , 1998 .

[7]  Nicholas A. Loehr,et al.  A conjectured combinatorial formula for the Hilbert series for diagonal harmonics , 2005, Discret. Math..

[8]  J Haglund A combinatorial model for the Macdonald polynomials. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  N. Bergeron,et al.  LATTICE DIAGRAM POLYNOMIALS AND EXTENDED PIERI RULES , 1999 .

[10]  Adriano M. Garsia,et al.  A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..

[11]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[12]  Mark Haiman,et al.  Combinatorics, symmetric functions, and Hilbert schemes , 2002 .

[13]  Nicholas A. Loehr,et al.  Combinatorics of q, t-parking functions , 2005, Adv. Appl. Math..

[14]  A. Garsia,et al.  A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .

[15]  B. Sagan The Symmetric Group , 2001 .

[16]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[17]  Mark Haiman,et al.  Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.

[18]  Jeffrey B. Remmel,et al.  Conjectured Combinatorial Models for the Hilbert Series of Generalized Diagonal Harmonics Modules , 2004, Electron. J. Comb..

[19]  A M Garsia,et al.  A positivity result in the theory of Macdonald polynomials , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  James Haglund Conjectured statistics for the q,t-Catalan numbers , 2003 .

[21]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[22]  Mark Haiman,et al.  Notes on Macdonald Polynomials and the Geometry of Hilbert Schemes , 2002 .

[23]  Nicholas A. Loehr,et al.  Trapezoidal lattice paths and multivariate analogues , 2003, Adv. Appl. Math..

[24]  Nicholas A. Loehr,et al.  Conjectured Statistics for the Higher q, t-Catalan Sequences , 2005, Electron. J. Comb..

[25]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.