Square $\boldsymbol{q,t}$-lattice paths and $\boldsymbol{\nabla(p_n)}$
暂无分享,去创建一个
[1] J. B. Remmel,et al. A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.
[2] Nicholas A. Loehr,et al. A combinatorial formula for Macdonald polynomials , 2005 .
[3] J. Haglund. A proof of the q,t-Schröder conjecture , 2004 .
[4] François Bergeron,et al. Identities and Positivity Conjectures for some remarkable Operators in the Theory of Symmetric Functions , 1999 .
[5] James Haglund,et al. A Schröder Generalization of Haglund's Statistic on Catalan Paths , 2003, Electron. J. Comb..
[6] F. Bergeron,et al. Science Fiction and Macdonald's Polynomials , 1998 .
[7] Nicholas A. Loehr,et al. A conjectured combinatorial formula for the Hilbert series for diagonal harmonics , 2005, Discret. Math..
[8] J Haglund. A combinatorial model for the Macdonald polynomials. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[9] N. Bergeron,et al. LATTICE DIAGRAM POLYNOMIALS AND EXTENDED PIERI RULES , 1999 .
[10] Adriano M. Garsia,et al. A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..
[11] Mark Haiman,et al. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.
[12] Mark Haiman,et al. Combinatorics, symmetric functions, and Hilbert schemes , 2002 .
[13] Nicholas A. Loehr,et al. Combinatorics of q, t-parking functions , 2005, Adv. Appl. Math..
[14] A. Garsia,et al. A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .
[15] B. Sagan. The Symmetric Group , 2001 .
[16] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[17] Mark Haiman,et al. Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.
[18] Jeffrey B. Remmel,et al. Conjectured Combinatorial Models for the Hilbert Series of Generalized Diagonal Harmonics Modules , 2004, Electron. J. Comb..
[19] A M Garsia,et al. A positivity result in the theory of Macdonald polynomials , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[20] James Haglund. Conjectured statistics for the q,t-Catalan numbers , 2003 .
[21] S. B. Atienza-Samols,et al. With Contributions by , 1978 .
[22] Mark Haiman,et al. Notes on Macdonald Polynomials and the Geometry of Hilbert Schemes , 2002 .
[23] Nicholas A. Loehr,et al. Trapezoidal lattice paths and multivariate analogues , 2003, Adv. Appl. Math..
[24] Nicholas A. Loehr,et al. Conjectured Statistics for the Higher q, t-Catalan Sequences , 2005, Electron. J. Comb..
[25] Bruce E. Sagan,et al. The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.