Anatomy, physiology, and pharmacology of the basal ganglia.

The basal ganglia consist of five interconnected nuclei in the basal forebrain that influence cortical control of voluntary movement. Synaptic information travels through the basal ganglia using distinct pathways from the input structure, the striatum, to the output nuclei, the substantia nigra pars reticulata and the globus pallidus internal segment. The activity of the striatal output pathways is influenced by glutamatergic input from the cerebral cortex, dopaminergic input from the substantia nigra pars compacta, and cholinergic interneurons. Since the basal ganglia output nuclei tonically inhibit the motor nuclei of the thalamus, the basal ganglia facilitate motor activity by disinhibiting the thalamus.

[1]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[2]  E. M. Adler,et al.  Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. , 1992, Brain research. Molecular brain research.

[3]  A. Levey,et al.  Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Gerfen,et al.  Dopaminergic and muscarinic regulation of striatal enkephalin and substance P messenger RNAs following striatal dopamine denervation: Effects of systemic and central administration of quinpirole and scopolamine , 1994, Neuroscience.

[5]  J. Bouyer,et al.  Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum , 1984, Brain Research.

[6]  P. Sonsalla,et al.  Interactions of D1 and D2 dopamine receptors on the ipsilateral vs. contralateral side in rats with unilateral lesions of the dopaminergic nigrostriatal pathway. , 1988, The Journal of pharmacology and experimental therapeutics.

[7]  B. Burns,et al.  Effects of trihexyphenidyl hydrochloride (Artane) on Parkinson's disease , 1964, Neurology.

[8]  H. Kita,et al.  Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations , 1988, Brain Research.

[9]  G. Landwehrmeyer,et al.  NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  I. Kopin The pharmacology of Parkinson's disease therapy: an update. , 1993, Annual review of pharmacology and toxicology.

[11]  G. Wooten,et al.  Selective localization of striatal D1 receptors to striatonigral neurons , 1990, Brain Research.

[12]  J. Vanderhaeghen,et al.  Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  C. Gerfen The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. , 1989, Science.

[14]  J. Fink,et al.  Adenosine antagonists potentiate D2 dopamine-dependent activation of Fos in the striatopallidal pathway , 1995, Neuroscience.

[15]  G. Canter,et al.  A CRITICAL ANALYSIS OF THE EFFECTS OF TRIHEXYPHENIDYL (ARTANE) ON THE COMPONENTS OF THE PARKINSONIAN SYNDROME , 1964, The Journal of nervous and mental disease.

[16]  U. Ungerstedt,et al.  Dopamine D1 Receptor‐mediated Facilitation of GABAergic Neurotransmission in the Rat Strioentopeduncular Pathway and its Modulation by Adenosine A1 Receptor‐mediated Mechanisms , 1996, The European journal of neuroscience.

[17]  P. Cox,et al.  Correlating Physiology with Gene Expression in Striatal Cholinergic Neurones , 2000, Journal of neurochemistry.

[18]  O. Hornykiewicz Dopamine (3-hydroxytyramine) and brain function. , 1966, Pharmacological reviews.

[19]  M. D. Crutcher,et al.  Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  D. Sibley,et al.  Molecular biology of dopamine receptors. , 1992, Trends in pharmacological sciences.

[22]  A. Graybiel,et al.  D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  T. Chase,et al.  D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. , 1987, Science.

[24]  G. Wooten,et al.  Selective D1 and D2 dopamine agonists differentially alter basal ganglia glucose utilization in rats with unilateral 6-hydroxydopamine substantia nigra lesions , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  G. Wooten,et al.  Differential regulation of striatal preproenkephalin mRNA by D1 and D2 dopamine receptors. , 1992, Brain research. Molecular brain research.

[27]  C. Gerfen,et al.  Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study , 1988, Brain Research.

[28]  C. W. Ragsdale,et al.  Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Wiley,et al.  Changes in D2 but not D1 receptor binding in the striatum following a selective lesion of striatopallidal neurons , 1992, Brain Research.

[30]  C. Gerfen,et al.  The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[31]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato‐pallidal complex , 1984, The Journal of comparative neurology.

[32]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[33]  J. Penney,et al.  The functional anatomy of disorders of the basal ganglia , 1995, Trends in Neurosciences.

[34]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[35]  J. Penney,et al.  Organization of N‐methyl‐D‐aspartate glutamate receptor gene expression in the basal ganglia of the rat , 1994, The Journal of comparative neurology.

[36]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[37]  L. Schiffer,et al.  Aromatic amino acids and modification of parkinsonism. , 1967, The New England journal of medicine.

[38]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[39]  B. Bloch,et al.  Dopamine receptor gene expression by enkephalin neurons in rat forebrain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Chase,et al.  Obligatory D-1/D-2 receptor interaction in the generation of dopamine agonist related behaviors. , 1986, European journal of pharmacology.

[41]  U. Ungerstedt,et al.  The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  E. Mohr,et al.  Huntington's disease: pathogenesis, diagnosis and treatment. , 1994, Journal of psychiatry & neuroscience : JPN.

[43]  E. Vaadia,et al.  Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates , 1998, Trends in Neurosciences.

[44]  T. Bonner,et al.  Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. E. Vaughn,et al.  The GABA Neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry , 1979, The Journal of comparative neurology.

[46]  C. Gerfen The neostriatal mosaic. I. compartmental organization of projections from the striatum to the substantia nigra in the rat , 1985, The Journal of comparative neurology.

[47]  L. Butcher,et al.  Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: A combined evans blue and acetylcholinesterase analysis , 1981, Brain Research Bulletin.

[48]  D. Surmeier,et al.  Coordinated Expression of Dopamine Receptors in Neostriatal Medium Spiny Neurons , 1996, The Journal of Neuroscience.

[49]  D. Standaert,et al.  Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  D. Surmeier,et al.  Dopamine receptor subtypes colocalize in rat striatonigral neurons. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[52]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[53]  Micaela Morelli,et al.  Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions , 1994, Trends in Neurosciences.

[54]  A. D. Smith,et al.  Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy , 1984, Neuroscience.

[55]  N. Aronin,et al.  Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  B. Bloch,et al.  Ontogeny of D1 and DARPP-32 gene expression in the rat striatum: an in situ hybridization study. , 1992, Brain research. Molecular brain research.

[57]  H. Bergman,et al.  The primate subthalamic nucleus. I. Functional properties in intact animals. , 1994, Journal of neurophysiology.

[58]  G. Chiara,et al.  Blockade of muscarinic receptors potentiates D1 dependent turning behavior and c-fos expression in 6-hydroxydopamine-lesioned rats but does not influence D2 mediated responses , 1993, Neuroscience.

[59]  M. Delong,et al.  Activity of pallidal neurons during movement. , 1971, Journal of neurophysiology.

[60]  R. Albin,et al.  Localization of ampa-selective excitatory amino acid receptor subunits in identified populations of striatal neurons , 1994, Neuroscience.

[61]  R. C. Collins,et al.  Metabolic effects of unilateral lesion of the substantia nigra , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  R. Albin,et al.  Localization of striatal excitatory amino acid binding site subtypes to striatonigral projection neurons , 1992, Brain Research.

[63]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[64]  J. McGinty,et al.  Scopolamine augments C-fos and zif/268 messenger rna expression induced by the full D1 dopamine receptor agonist SKF-82958 in the intact rat striatum , 1996, Neuroscience.

[65]  C. Gerfen,et al.  The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  J. H. Carlson,et al.  Nigrostriatal lesion alters neurophysiological responses to selective and nonselective D‐1 and D‐2 dopamine agonists in rat globus pallidus , 1990, Synapse.

[67]  T. Powell,et al.  The structure of the caudate nucleus of the cat: light and electron microscopy. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[68]  B. Bloch,et al.  D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum , 1990, Neuroscience Letters.

[69]  A. Grace,et al.  Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—1. Identification and characterization , 1983, Neuroscience.

[70]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  J. Yelnik Functional anatomy of the basal ganglia , 2002, Movement disorders : official journal of the Movement Disorder Society.

[72]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[73]  S. Afsharpour,et al.  The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin-and substance P-immunoreactive neurons in the neostriatum of the rat and cat: Evidence for partial population overlap , 1986, Neuroscience.

[74]  Garrett E. Alexander Basal ganglia , 1998 .

[75]  M. Herkenham,et al.  Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum , 1981, Nature.

[76]  H. Tilson,et al.  Influence of nigrostriatal dopaminergic tone on the biosynthesis of dynorphin and enkephalin in rat striatum. , 1990, Brain research. Molecular brain research.

[77]  G. Robertson,et al.  Synergistic effects of D1 and D2 dopamine agonists on turning behaviour in rats , 1986, Brain Research.

[78]  M. Starr Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson' disease , 1995, Synapse.

[79]  B. Bloch,et al.  D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum , 1995, The Journal of comparative neurology.

[80]  G. Wooten,et al.  D2 dopaminergic regulation of striatal preproenkephalin mRNA levels is mediated at least in part through cholinergic interneurons. , 1992, Brain research. Molecular brain research.