STIMO: STIll and MOving video storyboard for the web scenario

In the current Web scenario a video browsing tool that produces on-the-fly storyboards is more and more a need. Video summary techniques can be helpful but, due to their long processing time, they are usually unsuitable for on-the-fly usage. Therefore, it is common to produce storyboards in advance, penalizing users customization. The lack of customization is more and more critical, as users have different demands and might access the Web with several different networking and device technologies. In this paper we propose STIMO, a summarization technique designed to produce on-the-fly video storyboards. STIMO produces still and moving storyboards and allows advanced users customization (e.g., users can select the storyboard length and the maximum time they are willing to wait to get the storyboard). STIMO is based on a fast clustering algorithm that selects the most representative video contents using HSV frame color distribution. Experimental results show that STIMO produces storyboards with good quality and in a time that makes on-the-fly usage possible.

[1]  Jinchang Ren,et al.  Hierarchical modeling and adaptive clustering for real-time summarization of rush videos in trecvid'08 , 2008, TVS '08.

[2]  A. Murat Tekalp,et al.  Two-stage hierarchical video summary extraction to match low-level user browsing preferences , 2003, IEEE Trans. Multim..

[3]  Steven J. Phillips Acceleration of K-Means and Related Clustering Algorithms , 2002, ALENEX.

[4]  Fabrizio Sebastiani,et al.  Cluster Generation and Cluster Labelling for Web Snippets: A Fast and Accurate Hierarchical Solution , 2006, SPIRE.

[5]  D. Hochbaum,et al.  A best possible approximation algorithm for the k--center problem , 1985 .

[6]  Gary Marchionini,et al.  Open video: A framework for a test collection , 2000, J. Netw. Comput. Appl..

[7]  Yueting Zhuang,et al.  Adaptive key frame extraction using unsupervised clustering , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[8]  Marco Pellegrini,et al.  VISTO: visual storyboard for web video browsing , 2007, CIVR '07.

[9]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[10]  Jeho Nam,et al.  Video abstract of video , 1999, 1999 IEEE Third Workshop on Multimedia Signal Processing (Cat. No.99TH8451).

[11]  Youssef Hadi,et al.  Video summarization by k-medoid clustering , 2006, SAC '06.

[12]  David C. Gibbon,et al.  Brief and high-interest video summary generation: evaluating the AT&T labs rushes summarizations , 2008, TVS '08.

[13]  Ba Tu Truong,et al.  Video abstraction: A systematic review and classification , 2007, TOMCCAP.

[14]  Allan Kuchinsky,et al.  Quality is in the eye of the beholder: meeting users' requirements for Internet quality of service , 2000, CHI.

[15]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[16]  Andreas Girgensohn,et al.  A fast layout algorithm for visual video summaries , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[17]  Yelena Yesha,et al.  Keyframe-based video summarization using Delaunay clustering , 2006, International Journal on Digital Libraries.

[18]  Xin Liu,et al.  Video summarization and retrieval using singular value decomposition , 2003, Multimedia Systems.

[19]  Yue Gao,et al.  Clip based video summarization and ranking , 2008, CIVR '08.

[20]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[21]  M. Pellegrini,et al.  On Using Clustering Algorithms to Produce Video Abstracts for the Web Scenario , 2008, 2008 5th IEEE Consumer Communications and Networking Conference.

[22]  Yap-Peng Tan,et al.  Video scene clustering by graph partitioning , 2003 .

[23]  Alan Hanjalic,et al.  An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis , 1999, IEEE Trans. Circuits Syst. Video Technol..

[24]  Behzad Shahraray,et al.  Automatic generation of pictorial transcripts of video programs , 1995, Electronic Imaging.

[25]  Marco Furini On Ameliorating the Perceived Playout Quality in Chunk-Driven P2P Media Streaming Systems , 2007, 2007 IEEE International Conference on Communications.

[26]  Jinchang Ren,et al.  Hierarchical Modeling and Adaptive Clustering for Real-Time Summarization of Rush Videos , 2009, IEEE Transactions on Multimedia.

[27]  Piotr Indyk,et al.  Sublinear time algorithms for metric space problems , 1999, STOC '99.

[28]  Fei Wu,et al.  Automatic Video Summarization by Affinity Propagation Clustering and Semantic Content Mining , 2008, 2008 International Symposium on Electronic Commerce and Security.

[29]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[30]  Fabrizio Sebastiani,et al.  Cluster Generation and Labeling for Web Snippets: A Fast, Accurate Hierarchical Solution , 2006, Internet Math..

[31]  Qi Tian,et al.  Content-adaptive digital music watermarking based on music structure analysis , 2007, TOMCCAP.

[32]  Moses Charikar,et al.  Similarity estimation techniques from rounding algorithms , 2002, STOC '02.