Sparse Spectral-Galerkin Method on An Arbitrary Tetrahedron Using Generalized Koornwinder Polynomials

In this paper, we propose a sparse spectral-Galerkin approximation scheme for solving the second-order partial differential equations on an arbitrary tetrahedron. Generalized Koornwinder polynomials are introduced on the reference tetrahedron as basis functions with their various recurrence relations and differentiation properties being explored. The method leads to well-conditioned and sparse linear systems whose entries can either be calculated directly by the orthogonality of the generalized Koornwinder polynomials for differential equations with constant coefficients or be evaluated efficiently via our recurrence algorithm for problems with variable coefficients. Clenshaw algorithms for the evaluation of any polynomial in an expansion of the generalized Koornwinder basis are also designed to boost the efficiency of the method. Finally, numerical experiments are carried out to illustrate the effectiveness of the proposed Koornwinder spectral method.

[1]  Milan Práger Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle , 1998 .

[2]  Sheehan Olver,et al.  A Sparse Spectral Method on Triangles , 2019, SIAM J. Sci. Comput..

[3]  H. Weyl Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgesetze. , 1913 .

[4]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[5]  Brian J. McCartin,et al.  Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem , 2003, SIAM Rev..

[6]  Jessika Eichel,et al.  Partial Differential Equations Second Edition , 2016 .

[7]  Yuan Xu,et al.  Discrete Fourier analysis on a dodecahedron and a tetrahedron , 2009, Math. Comput..

[8]  Huiyuan Li,et al.  The triangular spectral element method for Stokes eigenvalues , 2017, Math. Comput..

[9]  Jie Shen,et al.  Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle , 2010, Math. Comput..

[10]  Veronika Pillwein,et al.  Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials , 2007, Computing.

[11]  Joachim Schöberl,et al.  New shape functions for triangular p-FEM using integrated Jacobi polynomials , 2006, Numerische Mathematik.

[12]  P. Carnevali,et al.  New basis functions and computational procedures for p‐version finite element analysis , 1993 .

[13]  Joseph E. Flaherty,et al.  Hierarchical finite element bases for triangular and tetrahedral elements , 2001 .

[14]  Sherwin,et al.  Tetrahedral hp Finite Elements : Algorithms and Flow Simulations , 1996 .

[15]  Wang Li-lian,et al.  a spectral method on tetrahedra using rational basis functions , 2010 .

[16]  Yunhe Liu,et al.  3-D dc resistivity modelling based on spectral element method with unstructured tetrahedral grids , 2020 .

[17]  Veronika Pillwein,et al.  Completions to Sparse Shape Functions for Triangular and Tetrahedral p-FEM , 2008 .

[18]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[19]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[20]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[21]  Xiaoyun Jiang,et al.  A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator , 2020, J. Comput. Phys..

[22]  Jie Shen,et al.  Generalized Jacobi polynomials/functions and their applications , 2009 .

[23]  Zhimin Zhang,et al.  How Many Numerical Eigenvalues Can We Trust? , 2013, J. Sci. Comput..

[24]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[25]  Jasper V. Stokman,et al.  Orthogonal Polynomials of Several Variables , 2001, J. Approx. Theory.

[26]  Leon M. Hall,et al.  Special Functions , 1998 .

[27]  George Em Karniadakis,et al.  A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .

[28]  Jie Shen,et al.  Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials , 2006, J. Sci. Comput..

[29]  Victor Ivrii,et al.  100 years of Weyl’s law , 2016, Microlocal Analysis, Sharp Spectral Asymptotics and Applications V.

[30]  A. Peano,et al.  Adaptive approximations in finite element structural analysis , 1979 .

[31]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[32]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .