暂无分享,去创建一个
[1] Milan Práger. Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle , 1998 .
[2] Sheehan Olver,et al. A Sparse Spectral Method on Triangles , 2019, SIAM J. Sci. Comput..
[3] H. Weyl. Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgesetze. , 1913 .
[4] C. W. Clenshaw. A note on the summation of Chebyshev series , 1955 .
[5] Brian J. McCartin,et al. Eigenstructure of the Equilateral Triangle, Part I: The Dirichlet Problem , 2003, SIAM Rev..
[6] Jessika Eichel,et al. Partial Differential Equations Second Edition , 2016 .
[7] Yuan Xu,et al. Discrete Fourier analysis on a dodecahedron and a tetrahedron , 2009, Math. Comput..
[8] Huiyuan Li,et al. The triangular spectral element method for Stokes eigenvalues , 2017, Math. Comput..
[9] Jie Shen,et al. Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle , 2010, Math. Comput..
[10] Veronika Pillwein,et al. Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials , 2007, Computing.
[11] Joachim Schöberl,et al. New shape functions for triangular p-FEM using integrated Jacobi polynomials , 2006, Numerische Mathematik.
[12] P. Carnevali,et al. New basis functions and computational procedures for p‐version finite element analysis , 1993 .
[13] Joseph E. Flaherty,et al. Hierarchical finite element bases for triangular and tetrahedral elements , 2001 .
[14] Sherwin,et al. Tetrahedral hp Finite Elements : Algorithms and Flow Simulations , 1996 .
[15] Wang Li-lian,et al. a spectral method on tetrahedra using rational basis functions , 2010 .
[16] Yunhe Liu,et al. 3-D dc resistivity modelling based on spectral element method with unstructured tetrahedral grids , 2020 .
[17] Veronika Pillwein,et al. Completions to Sparse Shape Functions for Triangular and Tetrahedral p-FEM , 2008 .
[18] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[19] D. Griffin,et al. Finite-Element Analysis , 1975 .
[20] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[21] Xiaoyun Jiang,et al. A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator , 2020, J. Comput. Phys..
[22] Jie Shen,et al. Generalized Jacobi polynomials/functions and their applications , 2009 .
[23] Zhimin Zhang,et al. How Many Numerical Eigenvalues Can We Trust? , 2013, J. Sci. Comput..
[24] T. Koornwinder. Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .
[25] Jasper V. Stokman,et al. Orthogonal Polynomials of Several Variables , 2001, J. Approx. Theory.
[26] Leon M. Hall,et al. Special Functions , 1998 .
[27] George Em Karniadakis,et al. A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .
[28] Jie Shen,et al. Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials , 2006, J. Sci. Comput..
[29] Victor Ivrii,et al. 100 years of Weyl’s law , 2016, Microlocal Analysis, Sharp Spectral Asymptotics and Applications V.
[30] A. Peano,et al. Adaptive approximations in finite element structural analysis , 1979 .
[31] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[32] G. Karniadakis,et al. Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .