Total Ionizing Dose Effects on 4 Mbit Phase Change Memory Arrays

We investigate Total Ionizing Dose effects on 4 Mbit Phase Change Memories (PCM) arrays. We demonstrate a high robustness of PCM against ionizing radiation. We irradiated PCM with 8-MeV electrons. Only small variations are measured in the cell distributions after irradiation. The primary cause of these variations is the degradation of the Bit-Line and the Word-Line selector MOSFETs. Finally, radiation does not compromise the functionality of the SET and the RESET operations.

[1]  R.,et al.  Challenges in hardening technologies using shallow-trench isolation , 1998 .

[2]  S. Hudgens,et al.  Total dose radiation response and high temperature imprint characteristics of chalcogenide based RAM resistor elements , 2000 .

[3]  Massimo Manghisoni,et al.  Radiation hardness perspectives for the design of analog detector readout circuits in the 0.18-/spl mu/m CMOS generation , 2002 .

[4]  Mika Huhtinen,et al.  Simulation of non-ionising energy loss and defect formation in silicon , 2002 .

[5]  A. Pirovano,et al.  Scaling analysis of phase-change memory technology , 2003, IEEE International Electron Devices Meeting 2003.

[6]  J. Rodgers,et al.  Chalcogenide memory arrays: characterization and radiation effects , 2003 .

[7]  A. Pirovano,et al.  Electrothermal and phase-change dynamics in chalcogenide-based memories , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[8]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[9]  G. Torelli,et al.  4-Mb MOSFET-selected phase-change memory experimental chip , 2004, Proceedings of the 30th European Solid-State Circuits Conference.

[10]  M. Turowski,et al.  Nonuniform total-dose-induced charge distribution in shallow-trench isolation oxides , 2004, IEEE Transactions on Nuclear Science.

[11]  D. Ielmini,et al.  Analysis of phase-transformation dynamics and estimation of amorphous-chalcogenide fraction in phase-change memories , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[12]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[13]  J. Rodgers,et al.  Results of radiation effects on a chalcogenide non-volatile memory array , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[14]  A. Pirovano,et al.  Analysis of phase distribution in phase-change nonvolatile memories , 2004, IEEE Electron Device Letters.

[15]  F. Pellizzer,et al.  Novel /spl mu/trench phase-change memory cell for embedded and stand-alone non-volatile memory applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[16]  A. Pirovano,et al.  Non-volatile memory technologies: emerging concepts and new materials , 2004 .

[17]  Guido Torelli,et al.  SET and RESET pulse characterization in BJT-selected phase-change memories , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[18]  G. Cervelli,et al.  Radiation-induced edge effects in deep submicron CMOS transistors , 2005, IEEE Transactions on Nuclear Science.

[19]  R. Bez,et al.  4-Mb MOSFET-selected /spl mu/trench phase-change memory experimental chip , 2005, IEEE Journal of Solid-State Circuits.

[20]  Guido Torelli,et al.  4-Mb MOSFET-selected μtrench phase-change memory experimental chip , 2005 .

[21]  A. Pirovano,et al.  Parasitic reset in the programming transient of PCMs , 2005, IEEE Electron Device Letters.

[22]  Xu Xi Total dose effects in MOS devices under different dose rates , 2005 .

[23]  G. Atwood,et al.  Chalcogenide Phase Change Memory: Scalable NVM for the Next Decade? , 2006, 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop.