Implementation of a continuation method for normal maps
暂无分享,去创建一个
[1] Francisco Facchinei,et al. A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..
[2] S. Dirkse,et al. The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .
[3] Stephen M. Robinson,et al. A reduction method for variational inequalities , 1998, Math. Program..
[4] S. M. Robinson. Newton's method for a class of nonsmooth functions , 1994 .
[5] Philip E. Gill,et al. Practical optimization , 1981 .
[6] James G. MacKinnon,et al. A TECHNIQUE FOR THE SOLUTION OF SPATIAL EQUILIBRIUM MODELS , 1976 .
[7] F. Facchinei. A Semismooth Newton Method For Variational Inequalities: Theoretical Results And Preliminary Numeric , 1997 .
[8] Liqun Qi,et al. A nonsmooth version of Newton's method , 1993, Math. Program..
[9] Patrick T. Harker,et al. A nonsmooth Newton method for variational inequalities, II: Numerical results , 1994, Math. Program..
[10] Patrick T. Harker,et al. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..
[11] Jirí V. Outrata,et al. A Newton method for a class of quasi-variational inequalities , 1995, Comput. Optim. Appl..
[12] M. Kojima,et al. EXTENSION OF NEWTON AND QUASI-NEWTON METHODS TO SYSTEMS OF PC^1 EQUATIONS , 1986 .
[13] Patrick T. Harker,et al. A nonsmooth Newton method for variational inequalities, I: Theory , 1994, Math. Program..
[14] Michael C. Ferris,et al. A pathsearch damped Newton method for computing general equilibria , 1996, Ann. Oper. Res..
[15] Eugene L. Allgower,et al. Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.
[16] J. Yorke,et al. Piecewise Smooth Homotopies , 1983 .
[17] E. Allgower,et al. Numerical path following , 1997 .
[18] T. Koopmans,et al. On the definition and computation of a capital stock invariant under optimization , 1972 .
[19] Daniel Ralph,et al. Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search , 1994, Math. Oper. Res..
[20] D. Ralph. On branching numbers of normal manifolds , 1994 .
[21] Jong-Shi Pang,et al. Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..
[22] Masao Fukushima,et al. Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems , 1996, Math. Program..
[23] S. Billups. Algorithms for complementarity problems and generalized equations , 1996 .
[24] David A. Kendrick,et al. GAMS : a user's guide, Release 2.25 , 1992 .
[25] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[26] S. M. Robinson,et al. Homotopies Based on Nonsmooth Equations for Solving Nonlinear Variational Inequalities , 1996 .
[27] Masakazu Kojima,et al. Variable dimension algorithms: Basic theory, interpretations and extensions of some existing methods , 1982, Math. Program..
[28] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.
[29] Herbert E. Scarf,et al. The Computation of Economic Equilibria , 1974 .
[30] J. Pang. Solution differentiability and continuation of Newton's method for variational inequality problems over polyhedral sets , 1990 .
[31] F. J. Gould,et al. Homotopy methods and global convergence , 1983 .
[32] Hichem Sellami. A homotopy continuation method for solving normal equations , 1998 .
[33] Stephen M. Robinson,et al. Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..
[34] Stephen J. Wright,et al. Optimization Software Guide , 1987 .
[35] J. Milnor. Topology from the differentiable viewpoint , 1965 .