Implementation of a continuation method for normal maps

This paper presents an implementation of a nonsmooth continuation method of which the idea was originally put forward by Alexander et al. We show how the method can be computationally implemented and present numerical results for variational inequality problems in up to 96 variables.

[1]  Francisco Facchinei,et al.  A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems , 1997, Math. Program..

[2]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[3]  Stephen M. Robinson,et al.  A reduction method for variational inequalities , 1998, Math. Program..

[4]  S. M. Robinson Newton's method for a class of nonsmooth functions , 1994 .

[5]  Philip E. Gill,et al.  Practical optimization , 1981 .

[6]  James G. MacKinnon,et al.  A TECHNIQUE FOR THE SOLUTION OF SPATIAL EQUILIBRIUM MODELS , 1976 .

[7]  F. Facchinei A Semismooth Newton Method For Variational Inequalities: Theoretical Results And Preliminary Numeric , 1997 .

[8]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[9]  Patrick T. Harker,et al.  A nonsmooth Newton method for variational inequalities, II: Numerical results , 1994, Math. Program..

[10]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[11]  Jirí V. Outrata,et al.  A Newton method for a class of quasi-variational inequalities , 1995, Comput. Optim. Appl..

[12]  M. Kojima,et al.  EXTENSION OF NEWTON AND QUASI-NEWTON METHODS TO SYSTEMS OF PC^1 EQUATIONS , 1986 .

[13]  Patrick T. Harker,et al.  A nonsmooth Newton method for variational inequalities, I: Theory , 1994, Math. Program..

[14]  Michael C. Ferris,et al.  A pathsearch damped Newton method for computing general equilibria , 1996, Ann. Oper. Res..

[15]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[16]  J. Yorke,et al.  Piecewise Smooth Homotopies , 1983 .

[17]  E. Allgower,et al.  Numerical path following , 1997 .

[18]  T. Koopmans,et al.  On the definition and computation of a capital stock invariant under optimization , 1972 .

[19]  Daniel Ralph,et al.  Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search , 1994, Math. Oper. Res..

[20]  D. Ralph On branching numbers of normal manifolds , 1994 .

[21]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[22]  Masao Fukushima,et al.  Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems , 1996, Math. Program..

[23]  S. Billups Algorithms for complementarity problems and generalized equations , 1996 .

[24]  David A. Kendrick,et al.  GAMS : a user's guide, Release 2.25 , 1992 .

[25]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[26]  S. M. Robinson,et al.  Homotopies Based on Nonsmooth Equations for Solving Nonlinear Variational Inequalities , 1996 .

[27]  Masakazu Kojima,et al.  Variable dimension algorithms: Basic theory, interpretations and extensions of some existing methods , 1982, Math. Program..

[28]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[29]  Herbert E. Scarf,et al.  The Computation of Economic Equilibria , 1974 .

[30]  J. Pang Solution differentiability and continuation of Newton's method for variational inequality problems over polyhedral sets , 1990 .

[31]  F. J. Gould,et al.  Homotopy methods and global convergence , 1983 .

[32]  Hichem Sellami A homotopy continuation method for solving normal equations , 1998 .

[33]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[34]  Stephen J. Wright,et al.  Optimization Software Guide , 1987 .

[35]  J. Milnor Topology from the differentiable viewpoint , 1965 .