Conjugate Schema and Basis Representation of Crossover and Mutation Operators

In genetic search algorithms and optimization routines, the representation of the mutation and crossover operators are typically defaulted to the canonical basis. We show that this can be influential in the usefulness of the search algorithm. We then pose the question of how to find a basis for which the search algorithm is most useful. The conjugate schema is introduced as a general mathematical construct and is shown to separate a function into smaller dimensional functions whose sum is the original function. It is shown that conjugate schema, when used on a test suite of functions, improves the performance of the search algorithm on 10 out of 12 of these functions. Finally, a rigorous but abbreviated mathematical derivation is given in the appendices.

[1]  Michael D. Vose,et al.  Isomorphisms of Genetic Algorithms , 1993, Artif. Intell..

[2]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[3]  Jan J. Mulawka,et al.  A New Class of the Crossover Operators for the Numerical Optimization , 1995, International Conference on Genetic Algorithms.

[4]  Jim Smith,et al.  An Adaptive Poly-Parental Recombination Strategy , 1995, Evolutionary Computing, AISB Workshop.

[5]  Emil Páles,et al.  Co-operation of syntax and semantics in flexive languages , 1990, J. Exp. Theor. Artif. Intell..

[6]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[7]  Annie S. Wu,et al.  A Comparison of the Fixed and Floating Building Block Representation in the Genetic Algorithm , 1996, Evolutionary Computation.

[8]  L. Darrell Whitley,et al.  Bit Representations with a Twist , 1997, ICGA.

[9]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[10]  GUNAR E. LIEPINS,et al.  Representational issues in genetic optimization , 1990, J. Exp. Theor. Artif. Intell..

[11]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[12]  Shigeyoshi Tsutsui,et al.  Forking Genetic Algorithms: GAs with Search Space Division Schemes , 1997, Evolutionary Computation.

[13]  Sanza T. Kazadi,et al.  Conjugate Schema in Genetic Search , 1997, ICGA.

[14]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[15]  Michael D. Vose,et al.  Generalizing the Notion of Schema in Genetic Algorithms , 1991, Artif. Intell..