Constructing higher-order miRNA-mRNA interaction networks in prostate cancer via hypergraph-based learning

BackgroundDysregulation of genetic factors such as microRNAs (miRNAs) and mRNAs has been widely shown to be associated with cancer progression and development. In particular, miRNAs and mRNAs cooperate to affect biological processes, including tumorigenesis. The complexity of miRNA-mRNA interactions presents a major barrier to identifying their co-regulatory roles and functional effects. Thus, by computationally modeling these complex relationships, it may be possible to infer the gene interaction networks underlying complicated biological processes.ResultsWe propose a data-driven, hypergraph structural method for constructing higher-order miRNA-mRNA interaction networks from cancer genomic profiles. The proposed model explicitly characterizes higher-order relationships among genetic factors, from which cooperative gene activities in biological processes may be identified. The proposed model is learned by iteration of structure and parameter learning. The structure learning efficiently constructs a hypergraph structure by generating putative hyperedges representing complex miRNA-mRNA modules. It adopts an evolutionary method based on information-theoretic criteria. In the parameter learning phase, the constructed hypergraph is refined by updating the hyperedge weights using the gradient descent method. From the model, we produce biologically relevant higher-order interaction networks showing the properties of primary and metastatic prostate cancer, as candidates of potential miRNA-mRNA regulatory circuits.ConclusionsOur approach focuses on potential cancer-specific interactions reflecting higher-order relationships between miRNAs and mRNAs from expression profiles. The constructed miRNA-mRNA interaction networks show oncogenic or tumor suppression characteristics, which are known to be directly associated with prostate cancer progression. Therefore, the hypergraph-based model can assist hypothesis formulation for the molecular pathogenesis of cancer.

[1]  Xinxia Peng,et al.  Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers , 2009, BMC Genomics.

[2]  Armin R. Mikler,et al.  Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology, BCB 2010, Niagara Falls, NY, USA, August 2-4, 2010 , 2010, BCB.

[3]  G. Kristiansen,et al.  Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma , 2009, International journal of cancer.

[4]  Jun-ichi Satoh,et al.  Comprehensive analysis of human microRNA target networks , 2011, BioData Mining.

[5]  E. Wang MicroRNA Systems Biology , 2007, 0712.3569.

[6]  R. Ray,et al.  MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells. , 2010, Genes & cancer.

[7]  Juan Liu,et al.  A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules , 2011, Bioinform..

[8]  Marc S Halfon,et al.  Computational discovery of cis-regulatory modules in Drosophila without prior knowledge of motifs , 2008, Genome Biology.

[9]  F. Bruggeman,et al.  Cancer: a Systems Biology disease. , 2006, Bio Systems.

[10]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[11]  Hui Liu,et al.  AnimalTFDB: a comprehensive animal transcription factor database , 2011, Nucleic Acids Res..

[12]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[13]  Wei Guo,et al.  Identification of miRs-143 and -145 that Is Associated with Bone Metastasis of Prostate Cancer and Involved in the Regulation of EMT , 2011, PloS one.

[14]  R. Dhir Stat3 Promotes Metastatic Progression of Prostate Cancer , 2009 .

[15]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[16]  C. Daub,et al.  BMC Systems Biology , 2007 .

[17]  Giovanni De Micheli,et al.  Prediction of regulatory modules comprising microRNAs and target genes , 2005, ECCB/JBI.

[18]  Christopher C. Moser,et al.  Natural engineering principles of electron tunnelling in biological oxidation–reduction , 1999, Nature.

[19]  Y. van de Peer,et al.  Module Network Inference from a Cancer Gene Expression Data Set Identifies MicroRNA Regulated Modules , 2010, PloS one.

[20]  Jiawei Han,et al.  Mining coherent dense subgraphs across massive biological networks for functional discovery , 2005, ISMB.

[21]  Byoung-Tak Zhang,et al.  Evolutionary layered hypernetworks for identifying microRNA-mRNA regulatory modules , 2010, IEEE Congress on Evolutionary Computation.

[22]  D. Bonci,et al.  MicroRNAs and prostate cancer. , 2010, Endocrine-related cancer.

[23]  Brendan J. Frey,et al.  Detecting MicroRNA Targets by Linking Sequence, MicroRNA and Gene Expression Data , 2006, RECOMB.

[24]  Wei-Po Lee,et al.  Computational methods for discovering gene networks from expression data , 2009, Briefings Bioinform..

[25]  Jiuyong Li,et al.  Identifying miRNAs, targets and functions , 2012, Briefings Bioinform..

[26]  M. Iorio,et al.  microRNA: New Players in Metastatic Process , 2013 .

[27]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[28]  Giovanni Vanni Frajese,et al.  miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1* , 2007, Journal of Biological Chemistry.

[29]  D. Hilfiker-Kleiner,et al.  STAT3 regulation of and by microRNAs in development and disease , 2012, JAK-STAT.

[30]  Ujjwal Maulik,et al.  Development of the human cancer microRNA network , 2010 .

[31]  Martha R. Stampfer,et al.  Role for DNA Methylation in the Regulation of miR-200c and miR-141 Expression in Normal and Cancer Cells , 2010, PloS one.

[32]  O Mason,et al.  Graph theory and networks in Biology. , 2006, IET systems biology.

[33]  C. Tepper,et al.  microRNAs and prostate cancer , 2008, Journal of cellular and molecular medicine.

[34]  J. Barciszewski,et al.  RNA Technologies in Cardiovascular Medicine and Research , 2008 .

[35]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[36]  N. Seki,et al.  Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer , 2011, British Journal of Cancer.

[37]  S. Schwartz,et al.  Gains of the relative genomic content of erbB-1 and erbB-2 in prostate carcinoma and their association with metastasis. , 1999, International journal of oncology.

[38]  Colleen D. McCabe,et al.  Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. , 2009, Cancer research.

[39]  Juan Nunez-Iglesias,et al.  Joint Genome-Wide Profiling of miRNA and mRNA Expression in Alzheimer's Disease Cortex Reveals Altered miRNA Regulation , 2010, PloS one.

[40]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[41]  Minghua Deng,et al.  A Lasso regression model for the construction of microRNA-target regulatory networks , 2011, Bioinform..

[42]  Nicola J. Rinaldi,et al.  Computational discovery of gene modules and regulatory networks , 2003, Nature Biotechnology.

[43]  M. Gleave,et al.  MicroRNAs Associated with Metastatic Prostate Cancer , 2011, PloS one.

[44]  J. Waxman,et al.  Wnt/β-catenin signalling in prostate cancer , 2012, Nature Reviews Urology.

[45]  Zhiping Liu,et al.  Network-based analysis of complex diseases. , 2012, IET systems biology.

[46]  Byoung-Tak Zhang,et al.  Hypernetworks: A Molecular Evolutionary Architecture for Cognitive Learning and Memory , 2008, IEEE Computational Intelligence Magazine.

[47]  Chris Sander,et al.  CancerGenes: a gene selection resource for cancer genome projects , 2006, Nucleic Acids Res..

[48]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[49]  A. Seth,et al.  MicroRNAs in prostate cancer: from biomarkers to molecularly-based therapeutics , 2012, Prostate Cancer and Prostatic Diseases.

[50]  J. Vishwanatha,et al.  Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges , 2012, Journal of carcinogenesis.

[51]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[52]  Angel Rubio,et al.  Joint analysis of miRNA and mRNA expression data , 2013, Briefings Bioinform..

[53]  A. Kraskov,et al.  Erratum: Estimating mutual information [Phys. Rev. E 69, 066138 (2004)] , 2011 .

[54]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Yves Van de Peer,et al.  Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data , 2010, Bioinform..

[56]  Y. Pekarsky,et al.  Reprogramming of miRNA networks in cancer and leukemia. , 2010, Genome research.

[57]  C. Sander,et al.  Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.

[58]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[59]  Tu Bao Ho,et al.  Finding microRNA regulatory modules in human genome using rule induction , 2008, BMC Bioinformatics.

[60]  Je-Gun Joung,et al.  Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model , 2009, Bioinform..

[61]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[62]  A. Jemal,et al.  Cancer Statistics, 2010 , 2010, CA: a cancer journal for clinicians.

[63]  Byoung-Tak Zhang,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm045 Data and text mining Discovery of microRNA–mRNA modules via population-based probabilistic learning , 2007 .

[64]  Jiuyong Li,et al.  Discovery of functional miRNA-mRNA regulatory modules with computational methods , 2009, J. Biomed. Informatics.

[65]  Y. Siregar Oncogene and Cancer - From Bench to Clinic , 2013 .

[66]  Hyun Jung Park,et al.  FoxM1: a master regulator of tumor metastasis. , 2011, Cancer research.

[67]  David Tuck,et al.  A hyper-graph approach for analyzing transcriptional networks in breast cancer , 2010, BCB '10.

[68]  Sridhar Ramaswamy,et al.  MYC and metastasis. , 2011, Cancer research.

[69]  Philip S. Yu,et al.  A graph-based approach to systematically reconstruct human transcriptional regulatory modules , 2007, ISMB/ECCB.

[70]  Min Zhu,et al.  Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation , 2010, Bioinform..

[71]  E. Wang,et al.  Genetic studies of diseases , 2007, Cellular and Molecular Life Sciences.

[72]  Wei Fan,et al.  miRNA-mRNA Correlation-Network Modules in Human Prostate Cancer and the Differences between Primary and Metastatic Tumor Subtypes , 2012, PloS one.

[73]  Jiuyong Li,et al.  Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy , 2009, BMC Bioinformatics.

[74]  B. Leiby,et al.  Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. , 2010, Endocrine-related cancer.

[75]  Anjali J. Koppal,et al.  Supplementary data: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites , 2010 .