Study of skew inverse Laurent series rings

In the present note, we continue the study of skew inverse Laurent series ring R((x−1; α,δ)) and skew inverse power series ring R[[x−1; α,δ]], where R is a ring equipped with an automorphism α and ...

[1]  A. Moussavi,et al.  Special properties of differential inverse power series rings , 2016 .

[2]  A. Moussavi,et al.  On Annihilator Ideals of Pseudo-differential Operator Rings , 2015 .

[3]  A. Nasr-Isfahani THE ASCENDING CHAIN CONDITION FOR PRINCIPAL LEFT IDEALS OF SKEW POLYNOMIAL RINGS , 2014 .

[4]  Yao Wang,et al.  2-GOOD RINGS AND THEIR EXTENSIONS , 2013 .

[5]  A. Alhevaz,et al.  Radicals of Skew Inverse Laurent Series Rings , 2013 .

[6]  A. Alhevaz,et al.  On Rings Having McCoy-Like Conditions , 2012 .

[7]  A. Moussavi,et al.  On Skew Quasi-Baer Rings , 2010 .

[8]  Huanyin Chen,et al.  On Weak Symmetric Rings , 2010 .

[9]  L. Ouyang ORE EXTENSIONS OF WEAK ZIP RINGS* , 2009, Glasgow Mathematical Journal.

[10]  M. Ziembowski,et al.  The ascending chain condition for principal left or right ideals of skew generalized power series rings , 2009 .

[11]  E. S. Letzter,et al.  Goldie Ranks of Skew Power Series Rings of Automorphic Type , 2008, 0812.2010.

[12]  A. Leroy,et al.  Quasi-duo skew polynomial rings , 2008, 0910.5374.

[13]  A. Tuganbaev The Jacobson radical of the Laurent series ring , 2008 .

[14]  E. S. Letzter,et al.  Noetherian Skew Inverse Power Series Rings , 2007, math/0703558.

[15]  Yang Lee,et al.  Structure and topological conditions of NI rings , 2006 .

[16]  Peter Vámos,et al.  2-GOOD RINGS , 2005 .

[17]  D. Tuganbaev Laurent Series Rings and Pseudo-Differential Operator Rings , 2005 .

[18]  A. Moussavi,et al.  Polynomial extensions of quasi-Baer rings , 2005 .

[19]  T. Kwak,et al.  Extensions of zip rings , 2005 .

[20]  T. Lam,et al.  Quasi-duo rings and stable range descent , 2005 .

[21]  A. Leroy,et al.  Goldie Conditions for Ore Extensions over Semiprime Rings , 2004, math/0411619.

[22]  W. K. Nicholson,et al.  RINGS IN WHICH ELEMENTS ARE UNIQUELY THE SUM OF AN IDEMPOTENT AND A UNIT , 2004, Glasgow Mathematical Journal.

[23]  G. Birkenmeier,et al.  Triangular matrix representations of ring extensions , 2003 .

[24]  P. Cohn Some remarks on projective-free rings , 2003 .

[25]  Daniel Frohn Modules with n-acc and the acc on certain types of annihilators , 2002 .

[26]  A. Tuganbaev Rings Close to Regular , 2002 .

[27]  Daniel Frohn A COUNTEREXAMPLE CONCERNING ACCP IN POWER SERIES RINGS , 2002 .

[28]  S. Annin ASSOCIATED PRIMES OVER SKEW POLYNOMIAL RINGS , 2002 .

[29]  Y. Hirano ON ORDERED MONOID RINGS OVER A QUASI-BAER RING , 2001 .

[30]  G. Marks ON 2-PRIMAL ORE EXTENSIONS , 2001 .

[31]  T. Dumitrescu,et al.  Some factorization properties of composite domains a+xb[x] and a+xb[[x]] , 2000 .

[32]  Y. Hirano,et al.  Semiprime ore extensions , 2000 .

[33]  Yang Lee,et al.  Questions on 2-primal rings , 1998 .

[34]  T. Lam,et al.  Primeness, semiprimeness and prime radical of ore extensions , 1997 .

[35]  Hua-Ping Yu On quasi-duo rings , 1995, Glasgow Mathematical Journal.

[36]  J. Matczuk Goldie rank of ore extensions , 1995 .

[37]  W. Heinzer,et al.  ACCP IN POLYNOMIAL RINGS: A COUNTEREXAMPLE , 1994 .

[38]  V. Camillo,et al.  Exchange rings, units and idempotents , 1994 .

[39]  A. Moussavi,et al.  On the Semiprimitivity of Skew Polynomial Rings , 1993, Proceedings of the Edinburgh Mathematical Society.

[40]  Tsit Yuen Lam,et al.  A first course in noncommutative rings , 2002 .

[41]  David F. Anderson,et al.  Factorization in Integral Domains , 1990 .

[42]  C. Faith Rings with zero intersection property on annihilators : zip rings. , 1989 .

[43]  Ken R. Goodearl,et al.  An Introduction to Noncommutative Noetherian Rings , 1989 .

[44]  Piotr Grzeszczuk Goloie dimension of differential operator rings , 1988 .

[45]  H. Koo,et al.  Isomorphic ore extensions , 1987 .

[46]  J. Krempa Radicals and derivations of algebras. , 1985 .

[47]  Allen D. Bell When are all prime ideals in an ore extension goldie , 1985 .

[48]  D. Jordan Simple skew laurent polynomial rings , 1984 .

[49]  K. R. Goodearl,et al.  Centralizers in differential, pseudo-differential and fractional differential operator rings , 1983 .

[50]  R. Warfield Prime Ideals in Ring Extensions , 1983 .

[51]  S. Montgomery Von neuman finiteness of tensor products of algebras , 1983 .

[52]  S. Bedi,et al.  Jacobson radical of skew polynomial rings and skew group rings , 1980 .

[53]  Ali Elahmar Sur la noetherianite de l'anneau des polynomes de ore , 1979 .

[54]  W. K. Nicholson Lifting idempotents and exchange rings , 1977 .

[55]  W. K. Nicholson Semiregular Modules and Rings , 1976, Canadian Journal of Mathematics.

[56]  J. Zelmanowitz The finite intersection property on annihilator right ideals , 1976 .

[57]  D. Jordan,et al.  A note on semiprimitivity of ore extensions , 1976 .

[58]  Carl Faith,et al.  Algebra II: Ring Theory , 1976 .

[59]  R. Warfield Serial rings and finitely presented modules , 1975 .

[60]  W. D. Blair,et al.  Rings whose faithful left ideals are cofaithful. , 1975 .

[61]  T. Lenagan Nil ideals in rings with finite Krull dimension , 1974 .

[62]  E. Evans Krull-Schmidt and cancellation over local rings. , 1973 .

[63]  R. Shock Polynomial rings over finite dimensional rings. , 1972 .

[64]  R. Warfield Exchange rings and decompositions of modules , 1972 .

[65]  J. Lambek On the Representation of Modules by Sheaves of Factor Modules , 1971, Canadian Mathematical Bulletin.

[66]  D. E. Fields Zero divisors and nilpotent elements in power series rings , 1971 .

[67]  H. Bell Near-rings in which each element is a power of itself , 1970, Bulletin of the Australian Mathematical Society.

[68]  Abraham Zaks,et al.  On Baer and quasi-Baer rings , 1970 .

[69]  Charles Lanski Nil Subrings of Goldie Rings are Nilpotent , 1969, Canadian Journal of Mathematics.

[70]  D. Jonah Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals , 1969 .

[71]  A. Goldie,et al.  Non-commutative noetherian rings , 1968 .

[72]  W. Clark Twisted matrix units semigroup algebras , 1967 .

[73]  I. Herstein,et al.  Nil Rings Satisfying Certain Chain Conditions , 1964, Canadian Journal of Mathematics.

[74]  H. Bass Finitistic dimension and a homological generalization of semi-primary rings , 1960 .

[75]  S. A. Amitsur Radicals Of Polynomial Rings , 1956, Canadian Journal of Mathematics.