Hierarchical Bayesian modelling with habitat and time covariates for estimating riverine fish population size by successive removal method

We present a hierarchical Bayesian modelling (HBM) framework for estimating riverine fish population size from successive removal data via electrofishing. It is applied to the estimation of the population of Atlantic salmon (Salmo salar) juveniles in the Oir River (France). The data set consists of 10 sampling sites sampled by one or two removals over a period of 20 years (1986-2005). We develop and contrast four models to assess the effect of temporal variations and habitat type on the density of fish and the probability of capture. The Bayes factor and the deviance information criterion are used to com- pare these models. The most credible and parsimonious model is the one that accounts for the effects of the years and the habitat type on the density of fish. It is used to extrapolate the population size in the entire river reach. This paper illustrates that HBM successfully accommodates large but sparse data sets containing poorly informative data for some units. Its condi- tional structure enables it to borrow strength from data-rich to data-poor units, thus improving the estimations. Predictions of the population size of the entire river reach can be derived, while accounting for all sources of uncertainty. Resume : Nous proposons un cadre de modelisation bayesien hierarchique (HBM) pour estimer l'abondance d'une population de juveniles de saumon atlantique (Salmo salar) dans la riviere Oir (France) par la methode des retraits successifs par peche electrique. Le jeu de donnees est compose de 10 sites d'echantillonnage, chacun ayant ete echantillonne par un ou deux passages sur une periode de 20 ans (1986-2005). Quatre modeles sont developpes pour introduire les variations inter- annuelles et les effets du type d'habitat sur la densite et sur la probabilite de capture. Ces modeles sont compares a l'aide du facteur de Bayes et d'un critere d'information base sur la deviance. Le modele retenu est celui qui prend en compte l'effet de l'annee et du type d'habitat sur la densite de juveniles de saumons. Il est utilise pour extrapoler la population de saumon a l'ensemble du cours d'eau. Cet article illustre que les HBM permettent de traiter des jeux de donnees de grande taille dont l'information portee par chaque unite echantillonnee est heterogene. La structure conditionnelle permet d'ameliorer les esti- mations car elle organise un transfert d'information entre les unites. Le modele permet d'obtenir des predictions de l'abondance sur l'ensemble du cours d'eau, tout en prenant en compte les differentes sources d'incertitude.

[1]  Robin J Wyatt,et al.  Mapping the abundance of riverine fish populations: integrating hierarchical Bayesian models with a geographic information system (GIS) , 2003 .

[2]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[3]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[4]  S. T. Bucklanda,et al.  State-space models for the dynamics of wild animal populations , 2003 .

[5]  Éric Parent,et al.  Setting biological reference points for Atlantic salmon stocks: transfer of information from data-rich to sparse-data situations by Bayesian hierarchical modelling , 2003 .

[6]  Richard G. Hamrick,et al.  Conservation of northern bobwhite on private lands in Georgia, USA under uncertainty about landscape-level habitat effects , 2009, Landscape Ecology.

[7]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[8]  A. Rosenberger,et al.  Validation of Abundance Estimates from Mark–Recapture and Removal Techniques for Rainbow Trout Captured by Electrofishing in Small Streams , 2005 .

[9]  Mike R. Strub,et al.  A New Methodfor Estimating Population Size from Removal Data , 1978 .

[10]  J. S. Welton,et al.  The natural control of salmon and trout populations in streams , 2003 .

[11]  James S. Clark,et al.  POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES , 2004 .

[12]  An improved removal method for estimating animal abundance. , 1994, Biometrics.

[13]  David G. Hankin,et al.  Multistage Sampling Designs in Fisheries Research: Applications in Small Streams , 1984 .

[14]  James S. Clark,et al.  Why environmental scientists are becoming Bayesians , 2004 .

[15]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[16]  Kevin Stokes,et al.  Coping with uncertainty in ecological advice: lessons from fisheries , 2003 .

[17]  N. Bez,et al.  Impact of Local Pollution on Fish Abundance Using Geostatistical Simulations , 2001 .

[18]  J. Schnute A New Approach to Estimating Populations by the Removal Method , 1983 .

[19]  Ransom A. Myers,et al.  Hierarchical Bayesian models of length-specific catchability of research trawl surveys , 2001 .

[20]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[21]  S. Brooks,et al.  On the Bayesian analysis of population size , 2001 .

[22]  C. Walters,et al.  Effects of Intraspecific Density and Environmental Variables on Electrofishing Catchability of Brown and Rainbow Trout in the Colorado River , 2004 .

[23]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[24]  A. Bardonnet,et al.  Freshwater habitat of Atlantic salmon (Salmo salar) , 2000 .

[25]  Alan Campbell,et al.  Use of Bayesian hierarchical models to estimate northern abalone, Haliotis kamtschatkana, growth parameters from tag-recapture data , 2009 .

[26]  P. Inchausti,et al.  Lognormality in ecological time series , 2002 .

[27]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo Methods for Computing Bayes Factors , 2001 .

[28]  E. Ziegel,et al.  geoENV VII: Geostatistics for Environmental Applications , 1997 .

[29]  A. Zale,et al.  Predicting fish abundance using single-pass removal sampling , 2000 .

[30]  Murdoch K. McAllister,et al.  A Bayesian hierarchical analysis of stock-recruit data: quantifying structural and parameter uncertainties , 2004 .

[31]  Paul S. Kemp,et al.  Habitat requirements of Atlantic salmon and brown trout in rivers and streams , 2003 .

[32]  J. Nichols,et al.  OF BUGS AND BIRDS: MARKOV CHAIN MONTE CARLO FOR HIERARCHICAL MODELING IN WILDLIFE RESEARCH , 2002 .

[33]  Creasy Problem,et al.  Reference Posterior Distributions for Bayesian Inference , 1979 .

[34]  Éric Parent,et al.  A Bayesian state-space modelling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data , 2004 .

[35]  J. Baglinière,et al.  Population estimates of juvenile Atlantic salmon, Salmo salar, as indices of smolt production in the R. Scorff, Brittany , 1986 .

[36]  Elja Arjas,et al.  Bayesian removal estimation of a population size under unequal catchability , 2005 .

[37]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[38]  Robin J Wyatt,et al.  Estimating riverine fish population size from single- and multiple-pass removal sampling using a hierarchical model , 2002 .

[39]  L. Miranda,et al.  Immobilization Thresholds of Electrofishing Relative to Fish Size , 2003 .

[40]  E. Rivot,et al.  Hierarchical Bayesian analysis of capture-mark-recapture data , 2002 .

[41]  N. Loneragan,et al.  An extravariation model for improving confidence intervals of population size estimates from removal data , 1996 .

[42]  Eduardo Ley,et al.  Bayesian modelling of catch in a north‐west Atlantic fishery , 2002 .

[43]  George B. Arhonditsis,et al.  A revaluation of lake-phosphorus loading models using a Bayesian hierarchical framework , 2009, Ecological Research.

[44]  S. Saltveit,et al.  Electrofishing — Theory and practice with special emphasis on salmonids , 1989, Hydrobiologia.

[45]  Jacques Dumas,et al.  Variability of demographic parameters and population dynamics of Atlantic salmon Salmo salar L. in a south-west French river , 2003 .

[46]  James T. Peterson,et al.  Transactions of the American Fisheries Society 133:462–475, 2004 � Copyright by the American Fisheries Society 2004 An Evaluation of Multipass Electrofishing for Estimating the Abundance of Stream-Dwelling Salmonids , 2022 .

[47]  Christopher K. Wikle,et al.  Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .

[48]  R. J. Gibson,et al.  Negative Bias in Removal Estimates of Atlantic Salmon Parr Relative to Stream Size , 1993 .

[49]  P. Boylan,et al.  A Bayesian approach to estimating Atlantic salmon fry densities using a rapid sampling technique , 2009 .

[50]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[51]  Jean-Luc Baglinière,et al.  Interannual changes in recruitment of the Atlantic salmon (Salmo salar) population in the River Oir (Lower Normandy, France): relationships with spawners and in-stream habitat , 2005 .

[52]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[53]  Stephen P Brooks,et al.  Bayesian computation: a statistical revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.