Study on corrosion migrations within catalyst-coated membranes of proton exchange membrane electrolyzer cells

[1]  S. Suresh Babu,et al.  Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells , 2017 .

[2]  Jingke Mo,et al.  Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy , 2017 .

[3]  Scott T. Retterer,et al.  Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting , 2017 .

[4]  Todd J. Toops,et al.  Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting , 2016 .

[5]  Horng-Wen Wu A review of recent development: Transport and performance modeling of PEM fuel cells , 2016 .

[6]  Ryan R. Dehoff,et al.  Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production , 2016 .

[7]  K. Bouzek,et al.  Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure , 2016 .

[8]  Xiaofeng Wang,et al.  Distributed cation contamination from cathode to anode direction in polymer electrolyte fuel cells , 2015 .

[9]  Todd J. Toops,et al.  Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell , 2015 .

[10]  S. Retterer,et al.  Investigation of titanium felt transport parameters for energy storage and hydrogen/oxygen production , 2015 .

[11]  Jingke Mo,et al.  Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy , 2015 .

[12]  S. Litster,et al.  A computational study to investigate the effects of the bipolar plate and gas diffusion layer interface in polymer electrolyte fuel cells , 2015 .

[13]  X. Ye,et al.  High performance solid oxide electrolysis cell with impregnated electrodes , 2015 .

[14]  B. Yi,et al.  The influence of Ferric ion contamination on the solid polymer electrolyte water electrolysis performance , 2015 .

[15]  V. Spallina,et al.  Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H2 production and CO2 capture , 2014 .

[16]  Bo Ki Hong,et al.  Optimization of GDLs for high-performance PEMFC employing stainless steel bipolar plates , 2013 .

[17]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[18]  Arunachala Mada Kannan,et al.  Nature inspired flow field designs for proton exchange membrane fuel cell , 2013 .

[19]  M. Gasik,et al.  Modeling and experimental assessment of Nafion membrane properties used in SO2 depolarized water electrolysis for hydrogen production , 2013 .

[20]  Suk Woo Nam,et al.  Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition , 2012 .

[21]  Suresh G. Advani,et al.  Advanced High Resolution Characterization Techniques for Degradation Studies in Fuel Cells , 2012 .

[22]  T. Nejat Veziroğlu,et al.  Polymer electrolyte fuel cell degradation , 2012 .

[23]  In-Hwan Oh,et al.  Degradation of polymer electrolyte membrane fuel cells repetitively exposed to reverse current condi , 2011 .

[24]  K. Gerwert,et al.  Proton transfer via a transient linear water-molecule chain in a membrane protein , 2011, Proceedings of the National Academy of Sciences.

[25]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[26]  K. Scott,et al.  The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance , 2010 .

[27]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[28]  Jam Hans Kuipers,et al.  Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: A simulation study , 2010 .

[29]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[30]  M. Mench,et al.  FUEL CELLS – PROTON-EXCHANGE MEMBRANE FUEL CELLS | Water Management , 2009 .

[31]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[32]  Emin Caglan Kumbur,et al.  Investigation of macro- and micro-porous layer interaction in polymer electrolyte fuel cells , 2008 .

[33]  Qiang Chen,et al.  Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. , 2008, Nature materials.

[34]  Bing Yang,et al.  Growth of Cr-Nitrides on commercial Ni–Cr and Fe–Cr base alloys to protect PEMFC bipolar plates , 2007 .

[35]  A. Marshall,et al.  Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis , 2007 .

[36]  Hongtan Liu,et al.  Effects of the electrical resistances of the GDL in a PEM fuel cell , 2006 .

[37]  S. Grigoriev,et al.  Pure hydrogen production by PEM electrolysis for hydrogen energy , 2006 .

[38]  Heli Wang,et al.  Investigation of a Duplex Stainless Steel as Polymer Electrolyte Membrane Fuel Cell Bipolar Plate Material , 2005 .

[39]  John A. Turner,et al.  Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates: Part 1: Model Ni–50Cr and austenitic 349™ alloys , 2004 .

[40]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[41]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[42]  P. Wilde,et al.  Structural and Physical Properties of GDL and GDL/BPP Combinations and their Influence on PEMFC Performance , 2004 .

[43]  Atul K. Jain,et al.  Stability: Energy for a Greenhouse Planet Advanced Technology Paths to Global Climate , 2008 .

[44]  A. Goswami,et al.  Study of Self-Diffusion of Monovalent and Divalent Cations in Nafion-117 Ion-Exchange Membrane , 2001 .

[45]  H. Hofmann,et al.  Electrolysis : The important energy transformer in a world of sustainable energy , 1998 .

[46]  H Luecke,et al.  Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. , 1998, Science.

[47]  J. Vanhanen,et al.  Electrolyser-metal hydride-fuel cell system for seasonal energy storage , 1998 .

[48]  C. Heitner-Wirguin Recent advances in perfluorinated ionomer membranes : structure, properties and applications , 1996 .

[49]  R. Simons,et al.  Strong electric field effects on proton transfer between membrane-bound amines and water , 1979, Nature.

[50]  J. B. S. Haldane,et al.  Daedalus; or, Science and the Future , 1924 .