Infrared emission from holmium doped gallium lanthanum sulphide glass

Infrared emission at 1.2, 1.25, 1.67, 2.0, 2.2, 2.9, 3.9, and 4.9µm is measured in holmium (Ho3+) doped gallium lanthanum sulphide (GLS) glass. Branching ratios, radiative quantum efficiencies, and emission cross sections are calculated from lifetime, absorption, and emission measurements using Judd-Ofelt analysis and the Fuchtbauer-Ladenburg equation. The fluorescence band at 3.9µm coincides with an atmospheric transmission window and the fluorescence band at 4.9µm overlaps with the fundamental absorption of carbon monoxide, making the glass a potential fibre laser source for remote sensing and gas sensing applications. This is the first time this latter transition has been reported in any holmium doped host.

[1]  Leslie Brandon Shaw,et al.  A 7-/spl mu/m praseodymium-based solid-state laser , 1996 .

[2]  Ahmet M. Kondoz,et al.  Error robustness improvement of video codecs with two-way decodable codes , 1997 .

[3]  Jong Heo,et al.  Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As(or Ga)-S glasses , 1996 .

[4]  R. S. Quimby,et al.  General procedure for the analysis of Er(3+) cross sections. , 1991, Optics letters.

[5]  R. Reisfeld,et al.  Absorption and fluorescence of Ho3+ IN La2S3·3Ga2S3 , 1977 .

[6]  David N. Payne,et al.  Gallium lanthanum sulphide optical fibre for active and passive applications , 1996 .

[7]  J. Sanghera,et al.  Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses. , 1997, Optics express.

[8]  Anne C. Tropper,et al.  Continuous-wave oscillation of holmium-doped silica fibre laser , 1989 .

[9]  Renata Reisfeld,et al.  Judd-Ofelt parameters and chemical bonding☆ , 1983 .

[10]  H. Tobben,et al.  Room temperature CW fibre laser at 3.5 mu m in Er/sup 3+/-doped ZBLAN glass , 1992 .

[11]  Hiroshi Suto,et al.  Chalcogenide fiber bundle for 3D spectroscopy , 1997 .

[12]  J. Heo,et al.  Emission characteristics of GeGaS glasses doped with Tm3+/Ho3+ , 1996 .

[13]  Tetsuro Izumitani,et al.  Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ , 1995 .

[14]  L. Wetenkamp,et al.  Optical properties of rare earth-doped ZBLAN glasses , 1992 .

[15]  J. Heo,et al.  Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses , 1995 .

[16]  L. Wetenkamp,et al.  Efficient CW operation of a 2.9 mu m Ho/sup 3+/-doped fluorozirconate fibre laser pumped at 640 nm , 1990 .

[17]  P. Werle Tunable diode laser absorption spectroscopy: recent findings and novel approaches , 1996 .

[18]  J. Schneider Superfluorescent fiber source at 3.9 μm in the attenuation minimum of the atmospheric window 3–5 μm , 1995 .

[19]  Subhash H. Risbud,et al.  Rare-earth chalcogenides — an emerging class of optical materials , 1994 .

[20]  J Schneider,et al.  Characterization of a Ho(3+)-doped fluoride fiber laser with a 3.9-mum emission wavelength. , 1997, Applied optics.

[21]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .