Synaptic mechanisms that shape visual signaling at the inner retina.

The retina is a layered structure that processes information in two stages. The outer plexiform layer (OPL) comprises the first stage and is where photoreceptors, bipolar cells, and horizontal cells interact synaptically. This is the synaptic layer where ON and OFF responses to light are formed, as well as the site where receptive field center and surround organization is first thought to occur. The inner plexiform layer (IPL) is where the second stage of synaptic interactions occurs. This synaptic layer is where subsequent visual processing occurs that may contribute to the formation of transient responses, which may underlie motion and direction sensitivity. In addition, synaptic interactions in the IPL may also contribute to the classical ganglion cell receptive field properties. This chapter will focus on the synapse and network properties at the IPL that sculpt light-evoked ganglion cell responses. These include synaptic mechanisms that may shape ganglion cell responses like desensitizing glutamate receptors and transporters, which remove glutamate from the synapse. Recent work suggests that inhibitory signaling at the IPL contributes to the surround receptive field organization of ganglion cells. A component of this amacrine cell inhibitory signaling is mediated by GABAC receptors, which are found on bipolar cell axon terminals in the IPL. Pharmacological experiments show that a component of the ganglion cell surround signal is mediated by these receptors, indicating that the ganglion cell center and surround receptive field organization is not formed entirely in the outer plexiform layer, as earlier thought.

[1]  Gang Tong,et al.  Block of glutamate transporters potentiates postsynaptic excitation , 1994, Neuron.

[2]  W R Taylor,et al.  TTX attenuates surround inhibition in rabbit retinal ganglion cells , 1999, Visual Neuroscience.

[3]  R. Miller,et al.  Bipolar origin of synaptic inputs to sustained OFF-ganglion cells in the mudpuppy retina. , 1988, Journal of neurophysiology.

[4]  R. Nicoll,et al.  The uptake inhibitor L-trans-PDC enhances responses to glutamate but fails to alter the kinetics of excitatory synaptic currents in the hippocampus. , 1993, Journal of neurophysiology.

[5]  G. Kinney,et al.  Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. , 1997, Journal of neurophysiology.

[6]  J. Clements Transmitter timecourse in the synaptic cleft: its role in central synaptic function , 1996, Trends in Neurosciences.

[7]  L. Trussell,et al.  Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[9]  Kahori Yamada,et al.  Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  H. V. Gersdorff,et al.  Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals , 1994, Nature.

[11]  R. Anwyl Metabotropic glutamate receptors: electrophysiological properties and role in plasticity , 1999, Brain Research Reviews.

[12]  M. Tachibana,et al.  Submillisecond Kinetics of Glutamate Release from a Sensory Synapse , 1998, Neuron.

[13]  Béla Völgyi,et al.  Feedback inhibition in the inner plexiform layer underlies the surround‐mediated responses of AII amacrine cells in the mammalian retina , 2002, The Journal of physiology.

[14]  H. Spekreijse,et al.  Horizontal cells feed back to cones by shifting the cone calcium-current activation range , 1996, Vision Research.

[15]  M. Higgs,et al.  Presynaptic effects of group III metabotropic glutamate receptors on excitatory synaptic transmission in the retina , 2002, Neuroscience.

[16]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[17]  H. Wässle,et al.  Differential expression of three glutamate transporter subtypes in the rat retina , 1996, Cell and Tissue Research.

[18]  A. Feigenspan,et al.  Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. , 1994, European journal of pharmacology.

[19]  H. Wässle,et al.  Glycine and GABA receptors in the mammalian retina , 1998, Vision Research.

[20]  Fan Gao,et al.  Functional Architecture of Synapses in the Inner Retina: Segregation of Visual Signals by Stratification of Bipolar Cell Axon Terminals , 2000, The Journal of Neuroscience.

[21]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[22]  H. Wässle,et al.  Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. , 1998, Journal of neurophysiology.

[23]  B. Sakmann,et al.  Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. , 1992, The Journal of physiology.

[24]  J. Isaacson Glutamate Spillover Mediates Excitatory Transmission in the Rat Olfactory Bulb , 1999, Neuron.

[25]  M. Slaughter,et al.  Multireceptor GABAergic regulation of synaptic communication in amphibian retina , 2001, The Journal of physiology.

[26]  M. Tachibana,et al.  Modulation of excitatory synaptic transmission by GABA(C) receptor-mediated feedback in the mouse inner retina. , 2001, Journal of neurophysiology.

[27]  G. Lynch,et al.  Effects of cyclothiazide on synaptic responses in slices of adult and neonatal rat hippocampus. , 1994, Neuroreport.

[28]  H. Wässle,et al.  GABAA and GABAC receptors on mammalian rod bipolar cells , 1998, The Journal of comparative neurology.

[29]  P. Sterling,et al.  Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina , 1992, The Journal of comparative neurology.

[30]  W. G. Owen,et al.  Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander. , 1996, Journal of neurophysiology.

[31]  S. Mangel,et al.  Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. , 1991, The Journal of physiology.

[32]  M. Tachibana,et al.  Excitatory Synaptic Transmission in the Inner Retina: Paired Recordings of Bipolar Cells and Neurons of the Ganglion Cell Layer , 1998, The Journal of Neuroscience.

[33]  D. Copenhagen,et al.  Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells. , 1995, The Journal of physiology.

[34]  L. Vyklický,et al.  Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  P D Lukasiewicz,et al.  Desensitizing glutamate receptors shape excitatory synaptic inputs to tiger salamander retinal ganglion cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  L. Trussell,et al.  Desensitization of AMPA receptors upon multiquantal neurotransmitter release , 1993, Neuron.

[37]  P. Lukasiewicz,et al.  Different combinations of GABAA and GABAC receptors confer distinct temporal properties to retinal synaptic responses. , 1998, Journal of neurophysiology.

[38]  Peter Sterling,et al.  Timing of Quantal Release from the Retinal Bipolar Terminal Is Regulated by a Feedback Circuit , 2003, Neuron.

[39]  G. Matthews,et al.  Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. , 1992, The Journal of physiology.

[40]  M. Tachibana,et al.  Dihydropyridine-sensitive calcium current mediates neurotransmitter release from bipolar cells of the goldfish retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  F S Werblin,et al.  A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  G. Awatramani,et al.  Intensity-Dependent, Rapid Activation of Presynaptic Metabotropic Glutamate Receptors at a Central Synapse , 2001, The Journal of Neuroscience.

[43]  H. Wässle,et al.  Synaptic clustering of GABAC receptor ρ‐subunits in the rat retina , 1998, The European journal of neuroscience.

[44]  D. Copenhagen,et al.  Inhibition is not required for the production of transient spiking responses from retinal ganglion cells. , 2000, Visual neuroscience.

[45]  M Kamermans,et al.  Hemichannel-Mediated Inhibition in the Outer Retina , 2001, Science.

[46]  J. Belgum,et al.  Light-evoked sustained inhibition in mudpuppy retinal ganglion cells , 1982, Vision Research.

[47]  M. Kidd Electron microscopy of the inner plexiform layer of the retina in the cat and the pigeon. , 1962, Journal of anatomy.

[48]  W. R. Taylor,et al.  Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells. , 1990, The Journal of physiology.

[49]  William K. Stell,et al.  Immunocytochemical localization of the high-affinity glutamate transporter, EAAC1, in the retina of representative vertebrate species , 1996, Neuroscience Letters.

[50]  J. Amin,et al.  Homomeric rho 1 GABA channels: activation properties and domains. , 1994, Receptors & channels.

[51]  R. Wong,et al.  Distinct Ionotropic GABA Receptors Mediate Presynaptic and Postsynaptic Inhibition in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[52]  A. L. Byzov,et al.  Electrical feedback mechanism in the processing of signals in the outer plexiform layer of the retina , 1986, Vision Research.

[53]  Shaul Hestrin,et al.  Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex , 1992, Neuron.

[54]  I. Raman,et al.  Concentration-jump analysis of voltage-dependent conductances activated by glutamate and kainate in neurons of the avian cochlear nucleus. , 1995, Biophysical journal.

[55]  S. Bloomfield,et al.  Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina , 2000, The Journal of physiology.

[56]  F S Werblin,et al.  Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. , 1998, Journal of neurophysiology.

[57]  P. Cook,et al.  Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells , 1998, Nature Neuroscience.

[58]  S. Watanabe,et al.  GABA-mediated negative feedback from horizontal cells to cones in carp retina. , 1982, The Japanese journal of physiology.

[59]  M. McCall,et al.  GABAC Receptor-mediated Inhibition Shapes Retinal Ganglion Cell Visual Responses , 2003 .

[60]  H. Wässle,et al.  Immunocytochemical localization of the GABAC receptor ρ subunits in the cat, goldfish, and chicken retina , 1997 .

[61]  J. L. Schnapf,et al.  Surround Antagonism in Macaque Cone Photoreceptors , 2003, Journal of Neuroscience.

[62]  F. Werblin,et al.  Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. , 1998, Journal of Neurophysiology.

[63]  S. Wu,et al.  Feedback connections and operation of the outer plexiform layer of the retina , 1992, Current Opinion in Neurobiology.

[64]  S. Picaud,et al.  GABAA and GABAC receptors in adult porcine cones: evidence from a photoreceptor‐glia co‐culture model , 1998, The Journal of physiology.

[65]  F. Werblin,et al.  Characterization of the glutamate transporter in retinal cones of the tiger salamander , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  H. Wässle,et al.  Compartmental Localization of a Metabotropic Glutamate Receptor (mGluR7): Two Different Active Sites at a Retinal Synapse , 1996, The Journal of Neuroscience.

[67]  Heinz Wässle,et al.  Presynaptic and postsynaptic localization of GABAB receptors in neurons of the rat retina , 1998, The European journal of neuroscience.

[68]  L. Trussell,et al.  Rapid desensitization of glutamate receptors in vertebrate central neurons. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. A. Wilson,et al.  AMPA-preferring receptors mediate excitatory synaptic inputs to retinal ganglion cells. , 1997, Journal of neurophysiology.

[70]  M. Kavanaugh,et al.  Excitatory Amino Acid Transporters of the Salamander Retina: Identification, Localization, and Function , 1998, The Journal of Neuroscience.

[71]  J. Diamond,et al.  Synaptically Released Glutamate Activates Extrasynaptic NMDA Receptors on Cells in the Ganglion Cell Layer of Rat Retina , 2002, The Journal of Neuroscience.

[72]  M. Tachibana,et al.  Active Role of Glutamate Uptake in the Synaptic Transmission from Retinal Nonspiking Neurons , 1999, The Journal of Neuroscience.

[73]  J. Sahel,et al.  GABAC Receptors Are Localized with Microtubule-Associated Protein 1B in Mammalian Cone Photoreceptors , 2000, The Journal of Neuroscience.

[74]  E. Raviola,et al.  Light and electron microscopic observations on the inner plexiform layer of the rabbit retina. , 1967, The American journal of anatomy.

[75]  P. Lukasiewicz,et al.  Light–evoked inhibition to bipolar cells in wild type and GABAC null mice , 2004 .

[76]  Laura Ballerini,et al.  Glutamate uptake from the synaptic cleft does not shape the decay of the non-NMDA component of the synaptic current , 1993, Neuron.

[77]  M. Slaughter,et al.  Serial inhibitory synapses in retina , 1997, Visual Neuroscience.

[78]  J. Hablitz,et al.  Altered desensitization produces enhancement of EPSPs in neocortical neurons. , 1994, Journal of neurophysiology.

[79]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[80]  H. Wässle,et al.  Synaptic Currents Generating the Inhibitory Surround of Ganglion Cells in the Mammalian Retina , 2001, The Journal of Neuroscience.

[81]  F S Werblin,et al.  The control of sensitivity in the retina. , 1973, Scientific American.

[82]  H. Wässle,et al.  Immunocytochemical Localization of the GABACReceptor ρ Subunits in the Mammalian Retina , 1996, The Journal of Neuroscience.

[83]  Matthew H. Higgs,et al.  Glutamate Uptake Limits Synaptic Excitation of Retinal Ganglion Cells , 1999, The Journal of Neuroscience.

[84]  Leon Lagnado,et al.  Continuous Vesicle Cycling in the Synaptic Terminal of Retinal Bipolar Cells , 1996, Neuron.

[85]  F S Werblin,et al.  Synaptic inputs to the ganglion cells in the tiger salamander retina , 1979, The Journal of general physiology.

[86]  P. Lukasiewicz,et al.  Elimination of the ρ1 Subunit Abolishes GABACReceptor Expression and Alters Visual Processing in the Mouse Retina , 2002, The Journal of Neuroscience.

[87]  M. Dichter,et al.  Quisqualate activates a rapidly inactivating high conductance ionic channel in hippocampal neurons. , 1989, Science.

[88]  F S Werblin,et al.  Three Levels of Lateral Inhibition: A Space–Time Study of the Retina of the Tiger Salamander , 2000, The Journal of Neuroscience.