Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach

Lignin is a substantial component of lignocellulosic biomass but is under-utilized relative to the cellulose and hemicellulose components. Historically, lignin has been burned as a source of process heat, but this heat is usually in excess of the process energy demands. Current models indicate that development of an economically competitive biorefinery system requires adding value to lignin beyond process heat. This addition of value, also known as lignin valorization, requires economically viable processes for separating the lignin from the other biomass components, depolymerizing the lignin into monomeric subunits, and then upgrading these monomers to a value-added product. The fact that lignin’s biological role is to provide biomass with structural integrity means that this heteropolymer can be difficult to depolymerize. However, there are chemical and biological routes to upgrade lignin from its native form to compounds of industrial value. Here we review the historical background and current technology of (thermo) chemical depolymerization of lignin; the natural ability of microbial enzymes and pathways to utilize lignin, the current prospecting work to find novel microbial routes to lignin degradation, and some applications of these microbial enzymes and pathways; and the current chemical and biological technologies to upgrade lignin-derived monomers.

[1]  Larry G. Felix,et al.  Integrated biomass hydropyrolysis and hydrotreating: a brief review , 2014 .

[2]  Christopher W. Johnson,et al.  Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. , 2015, Metabolic engineering.

[3]  Kenji Sonomoto,et al.  Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production , 2013 .

[4]  G. C. April,et al.  Evaluation of Polymer-Based Aqueous Biphasic Systems As Improvement for the Hardwood Alkaline Pulping Process , 2002 .

[5]  L. Brossard,et al.  Electrocatalytic hydrogenation of 4-phenoxyphenol on active powders highly dispersed in a reticulated vitreous carbon electrode , 1999 .

[6]  Bernard Boutevin,et al.  Vanillin, a promising biobased building-block for monomer synthesis , 2014 .

[7]  István T. Horváth,et al.  Valorization of Biomass: Deriving More Value from Waste , 2012, Science.

[8]  N. Ellis,et al.  Characterization of Pyrolytic Lignin Extracted from Bio-oil , 2010 .

[9]  G. de Revel,et al.  Vanillin production from simple phenols by wine‐associated lactic acid bacteria , 2006, Letters in applied microbiology.

[10]  J. Mason,et al.  Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. , 1997, Advances in microbial physiology.

[11]  S. Scott,et al.  Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol , 2010 .

[12]  T. Fukunaga,et al.  Production of phenols from lignin via depolymerization and catalytic cracking , 2013 .

[13]  Greg L. Hura,et al.  Fusion of Dioxygenase and Lignin-binding Domains in a Novel Secreted Enzyme from Cellulolytic Streptomyces sp. SirexAA-E* , 2013, The Journal of Biological Chemistry.

[14]  J. Zhao,et al.  Thermo-chemical conversion of lignin to aromatic compounds: Effect of lignin source and reaction temperature , 2015 .

[15]  Yuan Xue,et al.  Role of Hydrogen Transfer during Catalytic Copyrolysis of Lignin and Tetralin over HZSM-5 and HY Zeolite Catalysts , 2016 .

[16]  J. Bokhoven,et al.  Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis , 2012 .

[17]  Kwang Ho Kim,et al.  Formation of phenolic oligomers during fast pyrolysis of lignin , 2014 .

[18]  W. Ford,et al.  Oxidation of lignin model compounds in water with dioxygen and hydrogen peroxide catalysed by metallophthalocyanines , 1993 .

[19]  A. Steinbüchel,et al.  Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin , 2000, Applied Microbiology and Biotechnology.

[20]  V. Renganathan,et al.  Mechanism of .beta.-aryl ether dimeric lignin model compound oxidation by lignin peroxidase by Phanerochaete chrysosporium , 1986 .

[21]  Gerald A. Tuskan,et al.  Lignin Valorization: Improving Lignin Processing in the Biorefinery , 2014, Science.

[22]  D. Meier,et al.  Catalytic hydropyrolysis of lignin : influence of reaction conditions on the formation and composition of liquid products , 1992 .

[23]  Anthony Dufour,et al.  Miscanthus: a fast‐growing crop for biofuels and chemicals production , 2012 .

[24]  L. N. Ornston,et al.  The Conversion of Catechol and Protocatechuate to β-Ketoadipate by Pseudomonas putida I. BIOCHEMISTRY , 1966 .

[25]  B. Simmons,et al.  Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1 , 2013, Front. Microbiol..

[26]  David K. Johnson,et al.  Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin , 2007 .

[27]  R. Agrawal,et al.  Biotransformation of Ferulic Acid to Vanillin by Locally Isolated Bacterial Cultures , 2003 .

[28]  R. Thring,et al.  Hydrocracking of solvolysis lignin in a batch reactor , 1996 .

[29]  A. Steinbüchel,et al.  Highly Efficient Biotransformation of Eugenol to Ferulic Acid and Further Conversion to Vanillin in Recombinant Strains of Escherichia coli , 2003, Applied and Environmental Microbiology.

[30]  G. Burchhardt,et al.  Anaerobic metabolism of aromatic compounds via the benzoyl‐CoA pathway , 1998 .

[31]  Wolfgang Zimmermann,et al.  Degradation of lignin by bacteria , 1990 .

[32]  A. Vega,et al.  Application of factorial design to the modelling of organosolv delignification of Miscanthus sinensis (elephant grass) with phenol and dilute acid solutions , 1997 .

[33]  Dominic W. S. Wong,et al.  Structure and Action Mechanism of Ligninolytic Enzymes , 2009, Applied biochemistry and biotechnology.

[34]  M. Sasaki,et al.  SUPERCRITICAL WATER TREATMENT OF BIOMASS FOR ENERGY AND MATERIAL RECOVERY , 2006 .

[35]  R. ten Have,et al.  Oxidative mechanisms involved in lignin degradation by white-rot fungi. , 2001, Chemical reviews.

[36]  M. Tien,et al.  Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. R. Gonçalves,et al.  Oxidation in Acidic Medium of Lignins from Agricultural Residues , 2008, Applied biochemistry and biotechnology.

[38]  Laura R. Jarboe,et al.  Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil , 2011, Applied Microbiology and Biotechnology.

[39]  H. Schägger,et al.  Genes Coding for a New Pathway of Aerobic Benzoate Metabolism in Azoarcus evansii , 2002, Journal of bacteriology.

[40]  H. J. Heeres,et al.  Catalytic Hydrotreatment of Alcell Lignin Using Supported Ru, Pd, and Cu Catalysts , 2015 .

[41]  D. Oh,et al.  Directing vanillin production from ferulic acid by increased acetyl‐CoA consumption in recombinant Escherichia coli , 2009, Biotechnology and bioengineering.

[42]  J. Heider,et al.  Microbial anaerobic aromatic metabolism. , 1997, Anaerobe.

[43]  A. Ragauskas,et al.  Catalytic hydrogenolysis of ethanol organosolv lignin , 2009 .

[44]  C. Crestini,et al.  Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds. , 2005, Bioorganic & medicinal chemistry.

[45]  G. Huber,et al.  The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound , 2013 .

[46]  J. J. Pis,et al.  Effects of support surface chemistry in hydrodeoxygenation reactions over CoMo/activated carbon sulfided catalysts , 1999 .

[47]  N. Walton,et al.  Molecules of Interest: Vanillin , 2003 .

[48]  M. Huuska,et al.  Hydrogenolysis and hydrocracking of the carbon-oxygen bond: I. Hydrocracking of some simple aromatic O-compounds , 1982 .

[49]  Stephen J. Miller,et al.  Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. , 2012, ChemSusChem.

[50]  N. Bakhshi,et al.  Upgrading of wood-derived bio-oil over HZSM-5 , 1991 .

[51]  R. Overend,et al.  Fractionation of lignocellulosics by steam-aqueous pretreatments , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[52]  Brent H Shanks,et al.  Understanding the fast pyrolysis of lignin. , 2011, ChemSusChem.

[53]  M. Klein,et al.  Reaction pathway analysis of thermal and catalytic lignin fragmentation by use of model compounds , 1983 .

[54]  A. Steinbüchel,et al.  Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440 , 2003, Applied Microbiology and Biotechnology.

[55]  James E. Miller,et al.  Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents , 1999 .

[56]  J. Salvadó,et al.  Structural characterization of technical lignins for the production of adhesives: Application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins , 2006 .

[57]  Ashwini Tilay,et al.  Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus. , 2010, Journal of agricultural and food chemistry.

[58]  W. Silver,et al.  Anaerobic Decomposition of Switchgrass by Tropical Soil-Derived Feedstock-Adapted Consortia , 2012, mBio.

[59]  J. Heider Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms. , 2007, Current opinion in chemical biology.

[60]  I. Cann,et al.  Insights into lignin degradation and its potential industrial applications. , 2013, Advances in applied microbiology.

[61]  N. Bakhshi,et al.  Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts , 1995 .

[62]  J. Bilbao,et al.  Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids , 2004 .

[63]  D. Mansuy,et al.  Iron porphyrin-catalyzed oxidation of 1,2-dimethoxyarenes : a discussion of the different reactions involved and the competition between the formation of methoxyquinones or muconic dimethyl esters , 1993 .

[64]  Dietrich Meier,et al.  Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups , 2001 .

[65]  Bettina Knapp,et al.  Coenzyme A-dependent Aerobic Metabolism of Benzoate via Epoxide Formation* , 2010, The Journal of Biological Chemistry.

[66]  G. Beckham,et al.  Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria† , 2015 .

[67]  M. Gasson,et al.  Functional analysis of the vanillin pathway in a vdh-negative mutant strain of Pseudomonas fluorescens AN103 , 2005 .

[68]  C. Thurston The structure and function of fungal laccases , 1994 .

[69]  C. Crestini,et al.  Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds , 2004 .

[70]  A. Sinskey,et al.  Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol , 2006, Applied Microbiology and Biotechnology.

[71]  A. Steinbüchel,et al.  Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. , 2006, Journal of biotechnology.

[72]  Jie Chang,et al.  Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis. , 2012, Bioresource technology.

[73]  B. Harvey,et al.  Synthesis of renewable bisphenols from creosol. , 2012, ChemSusChem.

[74]  Laurent Mialon,et al.  Polyalkylenehydroxybenzoates (PAHBs): biorenewable aromatic/aliphatic polyesters from lignin. , 2011, Macromolecular rapid communications.

[75]  K. Piontek,et al.  Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. , 2005, Journal of molecular biology.

[76]  Jie Xu,et al.  Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process , 2013 .

[77]  W. Eisenreich,et al.  Aerobic benzoyl‐CoA catabolic pathway in Azoarcus evansii: studies on the non‐oxygenolytic ring cleavage enzyme , 2005, Molecular microbiology.

[78]  J. Carlson,et al.  Lignin degradation in wood-feeding insects , 2008, Proceedings of the National Academy of Sciences.

[79]  Chen Zhao,et al.  Highly selective catalytic conversion of phenolic bio-oil to alkanes. , 2009, Angewandte Chemie.

[80]  L. N. Ornston,et al.  The beta-ketoadipate pathway. , 1973, Advances in microbial physiology.

[81]  F. G. Calvo-Flores,et al.  Lignin as renewable raw material. , 2010, ChemSusChem.

[82]  Christopher W. Johnson,et al.  Lignin valorization through integrated biological funneling and chemical catalysis , 2014, Proceedings of the National Academy of Sciences.

[83]  Z. Deng,et al.  Enhanced vanillin production from ferulic acid using adsorbent resin , 2007, Applied Microbiology and Biotechnology.

[84]  R D Rogers,et al.  Investigation of aqueous biphasic systems for the separation of lignins from cellulose in the paper pulping process. , 2000, Journal of chromatography. B, Biomedical sciences and applications.

[85]  J. Bilbao,et al.  Pyrolytic lignin removal for the valorization of biomass pyrolysis crude bio-oil by catalytic transformation , 2010 .

[86]  D. Gibson,et al.  Aromatic hydrocarbon dioxygenases in environmental biotechnology. , 2000, Current opinion in biotechnology.

[87]  T. Bugg,et al.  Enzymatic conversion of lignin into renewable chemicals. , 2015, Current opinion in chemical biology.

[88]  P. Wadgaonkar,et al.  New poly(ether urethane)s based on lignin derived aromatic chemicals via A-B monomer approach: Synthesis and characterization , 2015 .

[89]  J. Kadla,et al.  Bio-based chemicals from biorefining: lignin conversion and utilisation , 2014 .

[90]  Rayford G. Anthony,et al.  Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment , 1988 .

[91]  Natalia Ivanova,et al.  Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in Wood- and Dung-Feeding Higher Termites , 2013, PloS one.

[92]  M. Koyama Hydrocracking of lignin-related model dimers , 1993 .

[93]  A. Ragauskas,et al.  Extraction of Hemicellulose from Loblolly Pine Woodchips and Subsequent Kraft Pulping , 2013 .

[94]  X. Qiu,et al.  Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds , 2015 .

[95]  Gregg T. Beckham,et al.  Adipic acid production from lignin , 2015 .

[96]  D. Daffonchio,et al.  Biotransformations of cinnamic and ferulic acid with actinomycetes , 2004 .

[97]  L. N. Ornston,et al.  The β-Ketoadipate Pathway , 1973 .

[98]  Pablo Domínguez de María,et al.  From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system , 2011 .

[99]  David K. Johnson,et al.  Hydrodeoxygenation of lignins and model compounds , 1988 .

[100]  Cuiqing Ma,et al.  Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillussubtilis HS8 , 2006, Applied Microbiology and Biotechnology.

[101]  M. Berhow,et al.  Laccase-mediator catalyzed conversion of model lignin compounds , 2016 .

[102]  Ayhan Demirbas,et al.  Pyrolysis and steam gasification processes of black liquor , 2002 .

[103]  S. Hallam,et al.  Metagenomic scaffolds enable combinatorial lignin transformation , 2014, Proceedings of the National Academy of Sciences.

[104]  Luis Serrano,et al.  Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization , 2014 .

[105]  Zhi-hao Sun,et al.  Biotransformation of Isoeugenol to Vanillin by a Novel Strain of Bacillus fusiformis , 2005, Biotechnology Letters.

[106]  E. Record,et al.  A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran , 2002, Applied biochemistry and biotechnology.

[107]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .

[108]  C. Crestini,et al.  Immobilized methyltrioxo rhenium (MTO)/H2O2 systems for the oxidation of lignin and lignin model compounds. , 2006, Bioorganic & medicinal chemistry.

[109]  H. Zarkesh-Esfahani,et al.  Conversion of Isoeugenol to Vanillin by Psychrobacter sp. Strain CSW4 , 2011, Applied Biochemistry and Biotechnology.

[110]  T. Reiner,et al.  Towards quantitative catalytic lignin depolymerization. , 2011, Chemistry.

[111]  D. Adhikari,et al.  Renewable hydrocarbons through biomass hydropyrolysis process: challenges and opportunities , 2013 .

[112]  Wolfgang G. Glasser,et al.  Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials , 2002 .

[113]  U. Ravid,et al.  Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. , 2000, Journal of biotechnology.

[114]  Joong-Hoon Ahn,et al.  Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1 , 2010, Archives of Microbiology.

[115]  P. Fowler,et al.  Extraction and characterization of lignins from maize stem and sugarcane bagasse , 2011 .

[116]  H. Zarkesh-Esfahani,et al.  Candida galli Strain PGO6: A Novel Isolated Yeast Strain Capable of Transformation of Isoeugenol into Vanillin and Vanillic Acid , 2011, Current Microbiology.

[117]  S. Rettig,et al.  Stereoselective hydrogenation of lignin degradation model compounds , 1997 .

[118]  P. Kersten,et al.  Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium , 1987, Journal of bacteriology.

[119]  P. Barghini,et al.  Regulation of ferulic catabolic genes in Pseudomonas fluorescens BF13: involvement of a MarR family regulator , 2008, Applied Microbiology and Biotechnology.

[120]  S. Dagley Catabolism of aromatic compounds by micro-organisms. , 1971, Advances in microbial physiology.

[121]  J. Heider,et al.  Anaerobic metabolism of aromatic compounds. , 1997, European journal of biochemistry.

[122]  D. Meier,et al.  Analytical pyrolysis and semicontinuous catalytic hydropyrolysis of Organocell lignin , 1993 .

[123]  J. Gerlt,et al.  Roles of small laccases from Streptomyces in lignin degradation. , 2014, Biochemistry.

[124]  Hongzhang Chen,et al.  Industrial technologies for bioethanol production from lignocellulosic biomass , 2016 .

[125]  W. Eisenreich,et al.  New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii , 2004, Molecular microbiology.

[126]  S. Kaliaguine,et al.  Production of hydrocarbons from aspen poplar pyrolytic oils over H-ZSM5 , 1984 .

[127]  E. Nikolla,et al.  Hydropyrolysis of Lignin using Pd/HZSM-5 , 2015 .

[128]  W. Eisenreich,et al.  A Novel Pathway of Aerobic Benzoate Catabolism in the BacteriaAzoarcus evansii and Bacillus stearothermophilus* , 2001, The Journal of Biological Chemistry.

[129]  Sook-Hee Lee,et al.  Production of vanillin from ferulic acid using recombinant strains ofEscherichia coli , 2005 .

[130]  Kunio Arai,et al.  Conversion of Lignin with Supercritical Water−Phenol Mixtures , 2003 .

[131]  G. Fuchs,et al.  The reducing component BoxA of benzoyl-coenzyme A epoxidase from Azoarcus evansii is a [4Fe-4S] protein. , 2011, Biochimica et biophysica acta.

[132]  W. Vermerris,et al.  Recent developments in polymers derived from industrial lignin , 2015 .

[133]  J. Lipscomb Mechanism of extradiol aromatic ring-cleaving dioxygenases. , 2008, Current opinion in structural biology.

[134]  Rui Xiao,et al.  Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors , 2016 .

[135]  Z. Deng,et al.  Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. , 2007, Journal of biotechnology.

[136]  P. Torre,et al.  Bioconversion of ferulate into vanillin by Escherichia coli strain JM109/pBB1 in an immobilized-cell reactor , 2004 .

[137]  Piotr Oleskowicz-Popiel,et al.  Lignocellulosic ethanol production without enzymes--technoeconomic analysis of ionic liquid pretreatment followed by acidolysis. , 2014, Bioresource technology.

[138]  T. Barth,et al.  Towards a Lignincellulosic Biorefinery: Direct One-Step Conversion of Lignin to Hydrogen-Enriched Biofuel , 2008 .

[139]  S. Saka,et al.  Pyrolysis reactions of Japanese cedar and Japanese beech woods in a closed ampoule reactor , 2010, Journal of Wood Science.

[140]  M. Ruzzi,et al.  GENETIC ENGINEERING OF ESCHERICHIA COLI TO ENHANCE BIOLOGICAL PRODUCTION OF VANILLIN FROM FERULIC ACID , 2008 .

[141]  Jalel Labidi,et al.  Base catalyzed depolymerization of lignin: Influence of organosolv lignin nature , 2014 .

[142]  N. Bakhshi,et al.  Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part II: Comparative catalyst performance and reaction pathways , 1995 .

[143]  F. P. Petrocelli,et al.  Chemical modeling analysis of the yields of single-ring phenolics from lignin liquefaction , 1985 .

[144]  P. Ducrot,et al.  Renewable Alternating Aliphatic–Aromatic Copolyesters Derived from Biobased Ferulic Acid, Diols, and Diacids: Sustainable Polymers with Tunable Thermal Properties , 2014 .

[145]  D. Navarro,et al.  Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus , 2001, Applied Microbiology and Biotechnology.

[146]  Takao Sato,et al.  DyP, a Unique Dye-decolorizing Peroxidase, Represents a Novel Heme Peroxidase Family , 2007, Journal of Biological Chemistry.

[147]  F. J. Ruiz-Dueñas,et al.  Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this , 2009, Microbial biotechnology.

[148]  Roland Lee,et al.  Lignin extraction--reassessment of the severity factor with respect to hydroxide concentration. , 2014, Bioresource technology.

[149]  Oliver Richard Inderwildi,et al.  Liquid fuels, hydrogen and chemicals from lignin: A critical review , 2013 .

[150]  Richard E. Joost,et al.  Biorenewable Resources, Engineering New Products from Agriculture , 2004 .

[151]  Ratna R. Sharma-Shivappa,et al.  A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. , 2007, Bioresource technology.

[152]  Zhi-hao Sun,et al.  Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD-8 , 2006 .

[153]  R. C. Kasana,et al.  Isolation and Identification of a Novel Strain of Pseudomonas chlororaphis Capable of Transforming Isoeugenol to Vanillin† , 2007, Current Microbiology.

[154]  W. Herrmann,et al.  Methyltrioxorhenium: oxidative cleavage of CC-double bonds and its application in a highly efficient synthesis of vanillin from biological waste , 2000 .

[155]  Q. Guo,et al.  Catalytic Hydrocracking of Pyrolytic Lignin to Liquid Fuel in Supercritical Ethanol , 2010 .

[156]  B. Weckhuysen,et al.  The catalytic valorization of lignin for the production of renewable chemicals. , 2010, Chemical reviews.

[157]  W. Ismail Benzoyl-coenzyme A thioesterase of Azoarcus evansii: properties and function , 2008, Archives of Microbiology.

[158]  Göran Gellerstedt,et al.  Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. , 2012, Bioresource technology.

[159]  A. Boateng,et al.  Screening heterogeneous catalysts for the pyrolysis of lignin , 2009 .

[160]  Jochen A. Müller,et al.  Anaerobic Degradation of Phenolic Compounds , 2000, Naturwissenschaften.

[161]  J. Heider,et al.  Microbial degradation of aromatic compounds — from one strategy to four , 2011, Nature Reviews Microbiology.

[162]  L. Avérous,et al.  Chemical modification of lignins: Towards biobased polymers , 2014 .

[163]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[164]  Luiz C. A. Barbosa,et al.  Determinação de constituintes químicos em madeira de eucalipto por Pi-CG/EM e calibração multivariada: comparação entre redes neurais artificiais e máquinas de vetor suporte , 2011 .

[165]  Bernard Delmon,et al.  Study of the Hydrodeoxygenation of Carbonyl, Carboxylic and Guaiacyl Groups Over Sulfided Como/gamma-al2o3 and Nimo/gamma-al2o3 Catalyst .2. Influence of Water, Ammonia and Hydrogen-sulfide , 1994 .

[166]  J. Wood,et al.  Degradation of the Benzene Nucleus by Bacteria , 1964, Nature.

[167]  M. Meier,et al.  Renewable co-polymers derived from vanillin and fatty acid derivatives , 2013 .

[168]  H. Morita,et al.  Conversion of isoeugenol into vanillic acid by Pseudomonas putida I58 cells exhibiting high isoeugenol-degrading activity. , 2003, Journal of bioscience and bioengineering.

[169]  Laurent Mialon,et al.  Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid , 2010 .

[170]  P. Blackwell,et al.  Biochar Application to Soil , 2012 .

[171]  L. N. Ornston,et al.  The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. , 1966, The Journal of biological chemistry.

[172]  J. Bolin,et al.  The Ins and Outs of Ring-Cleaving Dioxygenases , 2006, Critical reviews in biochemistry and molecular biology.

[173]  Eric C. D. Tan,et al.  Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons , 2013 .

[174]  M. Hocking VANILLIN : SYNTHETIC FLAVORING FROM SPENT SULFITE LIQUOR , 1997 .

[175]  F. Fava,et al.  Vanillin production using metabolically engineered Escherichia coli under non-growing conditions , 2007, Microbial cell factories.

[176]  Douglas C. Elliott,et al.  Historical Developments in Hydroprocessing Bio-oils , 2007 .

[177]  Josiah T. Reams,et al.  Effects of o-Methoxy Groups on the Properties and Thermal Stability of Renewable High-Temperature Cyanate Ester Resins , 2015 .

[178]  G. Huber,et al.  Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. , 2015, Chemical reviews.

[179]  A. Bridgwater,et al.  An overview of fast pyrolysis of biomass , 1999 .

[180]  Y. Sano,et al.  Solvolysis Pulping with Cresols-Water System , 1984 .

[181]  A. Ragauskas,et al.  Economic Analysis of an Organosolv Process for Bioethanol Production , 2014 .

[182]  Natalia N. Ivanova,et al.  Complete genome sequence of “Enterobacter lignolyticus” SCF1 , 2011, Standards in genomic sciences.

[183]  Jérôme Lecomte,et al.  Chemo-enzymatic functionalization of gallic and vanillic acids: synthesis of bio-based epoxy resins prepolymers , 2012 .

[184]  A. Vega,et al.  Fractionation of lignocellulose materials with phenol and dilute HCl , 1991, Wood Science and Technology.

[185]  F. Guillén,et al.  Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. , 1997, Archives of biochemistry and biophysics.

[186]  R. Crawford,et al.  Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium , 1985 .

[187]  J. G. Leahy,et al.  Evolution of the soluble diiron monooxygenases. , 2003, FEMS microbiology reviews.

[188]  M. Hajaligol,et al.  Characterization of chars from pyrolysis of lignin , 2004 .

[189]  M. Hoang,et al.  Catalytic Wet Oxidation of Ferulic Acid (A Model Lignin Compound) Using Heterogeneous Copper Catalysts , 2007 .

[190]  Charles A. Mullen,et al.  Catalytic pyrolysis-GC/MS of lignin from several sources , 2010 .

[191]  Chen Zhao,et al.  Selective degradation of wood lignin over noble-metal catalysts in a two-step process. , 2008, ChemSusChem.

[192]  U. Ermler,et al.  Structure and Mechanism of the Diiron Benzoyl-Coenzyme A Epoxidase BoxB* , 2011, The Journal of Biological Chemistry.

[193]  C. Xu,et al.  Hydrothermal degradation of alkali lignin to bio-phenolic compounds in sub/supercritical ethanol and water–ethanol co-solvent , 2012 .

[194]  Arthur J. Ragauskas,et al.  NMR Characterization of Pyrolysis Oils from Kraft Lignin , 2011 .

[195]  M. Funaoka,et al.  Rapid separation of wood into carbohydrate and lignin with concentrated acid-phenol system , 1989 .

[196]  D. Stewart Lignin as a base material for materials applications: Chemistry, application and economics , 2008 .

[197]  Y. Pagán-Torres,et al.  Catalytic conversion of biomass using solvents derived from lignin , 2012 .

[198]  A. Kloekhorst,et al.  Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation , 2009 .

[199]  Evangelos C. Petrou,et al.  Sustainability of Systems Producing Ethanol, Power, and Lignosulfonates or Lignin from Corn Stover: A Comparative Assessment , 2014 .

[200]  Debkumar Chakraborty,et al.  Biotechnological and Molecular Approaches for Vanillin Production: a Review , 2013, Applied Biochemistry and Biotechnology.

[201]  O. Hayaishi From Oxygenase to Sleep , 2008, Journal of Biological Chemistry.

[202]  S. Fong,et al.  Lignin biodegradation and industrial implications , 2014 .

[203]  N. Bakhshi,et al.  Catalytic upgrading of fast pyrolysis oil over hzsm-5 , 1993 .

[204]  R. Dicosimo,et al.  Oxidation of lignin model compounds using single-electron-transfer catalysts , 1988 .

[205]  W. Boerjan,et al.  Lignin biosynthesis. , 2003, Annual review of plant biology.

[206]  Qing-Xiang Guo,et al.  Green Solvent for Flash Pyrolysis Oil Separation , 2009 .

[207]  A. Faaij,et al.  Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term , 2005 .

[208]  K. Sarkanen Chemistry of solvent pulping , 1990 .

[209]  Kwang Ho Kim,et al.  Hydrogen-Donor-Assisted Solvent Liquefaction of Lignin to Short-Chain Alkylphenols Using a Micro Reactor/Gas Chromatography System , 2014 .

[210]  D. W. Ribbons,et al.  New Pathways in the Oxidative Metabolism of Aromatic Compounds by Micro-Organisms , 1960, Nature.

[211]  S. Saka,et al.  Reactivity of lignin in supercritical methanol studied with various lignin model compounds , 2003, Wood Science and Technology.

[212]  A. McAloon,et al.  Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol , 2013 .

[213]  Alain Van Dorsselaer,et al.  Identification and characterization of the tungsten-containing class of benzoyl-coenzyme A reductases , 2009, Proceedings of the National Academy of Sciences.

[214]  Robin D. Rogers,et al.  Polyethylene glycol and solutions of polyethylene glycol as green reaction media , 2005 .

[215]  Mathieu F. Bilodeau,et al.  Depolymerization of steam-treated lignin for the production of green chemicals. , 2011, Bioresource technology.

[216]  M. Sakuranaga,et al.  Degradation of Lignin Compounds by Bacteria from Termite Guts , 1998, Biotechnology Letters.

[217]  J. Bains,et al.  Structural and Biophysical Characterization of BoxC from Burkholderia xenovorans LB400 , 2009, The Journal of Biological Chemistry.

[218]  H. Viertler,et al.  Anodic cleavage of lignin model dimers in methanol , 1992 .

[219]  R. Xiao,et al.  Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. , 2011, Bioresource technology.

[220]  V. Parmon,et al.  Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel , 2009 .

[221]  Arthur J. Ragauskas,et al.  Switchgrass as an energy crop for biofuel production: A review of its ligno-cellulosic chemical properties , 2010 .

[222]  S. Leite,et al.  Vanillin production by Phanerochaete chrysosporium grown on green coconut agro-industrial husk in solid state fermentation , 2008, BioResources.

[223]  P. Sarangi,et al.  Enhancing the rate of ferulic acid bioconversion utilizing glucose as carbon source , 2010 .

[224]  S. Caillol,et al.  Vanillin, a key-intermediate of biobased polymers , 2015 .

[225]  Rahul Singh,et al.  The emerging role for bacteria in lignin degradation and bio-product formation. , 2011, Current opinion in biotechnology.

[226]  S. Harayama,et al.  Functional and evolutionary relationships among diverse oxygenases. , 1992, Annual review of microbiology.

[227]  B. Gevert,et al.  Kinetics of the HDO of methyl-substituted phenols , 1987 .

[228]  L. J. Wright,et al.  Fe(TSPc)-Catalysed Benzylic Oxidation and Subsequent Dealkylation of a Non-Phenolic Lignin Model , 2000 .

[229]  G. Fuchs,et al.  Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. , 1995, European journal of biochemistry.

[230]  U. Ravid,et al.  Biotransformations of propenylbenzenes by an Arthrobacter sp. and its t-anethole blocked mutants. , 2003, Journal of biotechnology.

[231]  A. Ragauskas,et al.  Poplar as a feedstock for biofuels: A review of compositional characteristics , 2010 .

[232]  J. Bilbao,et al.  Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. I. Alcohols and Phenols , 2004 .

[233]  Ralph P. Overend,et al.  Pretreatment-Catalyst effects and the combined severity parameter , 1990 .

[234]  M. Umetsu,et al.  Efficient conversion of lignin into single chemical species by solvothermal reaction in water–p-cresol solvent , 2004 .

[235]  M. Yamada,et al.  Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells , 2007, Applied Microbiology and Biotechnology.

[236]  Julian R.H. Ross,et al.  The Biofine Process – Production of Levulinic Acid, Furfural, and Formic Acid from Lignocellulosic Feedstocks , 2008 .