The rise of machine consciousness: Studying consciousness with computational models

Efforts to create computational models of consciousness have accelerated over the last two decades, creating a field that has become known as artificial consciousness. There have been two main motivations for this controversial work: to develop a better scientific understanding of the nature of human/animal consciousness and to produce machines that genuinely exhibit conscious awareness. This review begins by briefly explaining some of the concepts and terminology used by investigators working on machine consciousness, and summarizes key neurobiological correlates of human consciousness that are particularly relevant to past computational studies. Models of consciousness developed over the last twenty years are then surveyed. These models are largely found to fall into five categories based on the fundamental issue that their developers have selected as being most central to consciousness: a global workspace, information integration, an internal self-model, higher-level representations, or attention mechanisms. For each of these five categories, an overview of past work is given, a representative example is presented in some detail to illustrate the approach, and comments are provided on the contributions and limitations of the methodology. Three conclusions are offered about the state of the field based on this review: (1) computational modeling has become an effective and accepted methodology for the scientific study of consciousness, (2) existing computational models have successfully captured a number of neurobiological, cognitive, and behavioral correlates of conscious information processing as machine simulations, and (3) no existing approach to artificial consciousness has presented a compelling demonstration of phenomenal machine consciousness, or even clear evidence that artificial phenomenal consciousness will eventually be possible. The paper concludes by discussing the importance of continuing work in this area, considering the ethical issues it raises, and making predictions concerning future developments.

[1]  N. Kanwisher,et al.  Visual attention: Insights from brain imaging , 2000, Nature Reviews Neuroscience.

[2]  Peter McLeod,et al.  Commentary to Note by Seth: Experiments show what post-decision wagering measures , 2008, Consciousness and Cognition.

[3]  Robert J Sawyer,et al.  Robot Ethics , 2007, Science.

[4]  S. Pockett The Nature of Consciousness: A Hypothesis , 2000 .

[5]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Ben Goertzel,et al.  A world survey of artificial brain projects, Part I: Large-scale brain simulations , 2010, Neurocomputing.

[7]  A. Revonsuo Inner Presence: Consciousness as a Biological Phenomenon , 2005 .

[8]  N. Block On a confusion about a function of consciousness , 1995, Behavioral and Brain Sciences.

[9]  Peter De Weerd,et al.  Attention, Neural Basis of , 2006 .

[10]  M. Farah,et al.  Behavioral Neurology and Neuropsychology , 1996 .

[11]  Peter Carruthers,et al.  Consciousness: Essays from a Higher-Order Perspective , 2005 .

[12]  Bernard J. Baars,et al.  An architectural model of conscious and unconscious brain functions: Global Workspace Theory and IDA , 2007, Neural Networks.

[13]  A. Seth THE STRENGTH OF WEAK ARTIFICIAL CONSCIOUSNESS , 2009 .

[14]  Jun'ichi Takeno,et al.  Conscious expectation system , 2011, BICA.

[15]  F. C. S. Schiller,et al.  A Critical Account of the Doctrine of Lotze. , 1895 .

[16]  J. Levine MATERIALISM AND QUALIA: THE EXPLANATORY GAP , 1983 .

[17]  F. Velde,et al.  Neural blackboard architectures of combinatorial structures in cognition , 2006 .

[18]  R. Llinás,et al.  The neuronal basis for consciousness. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  A. Cowey,et al.  Post-decision wagering objectively measures awareness , 2007, Nature Neuroscience.

[20]  Salvatore Gaglio,et al.  SYNTHETIC PHENOMENOLOGY AND HIGH-DIMENSIONAL BUFFER HYPOTHESIS , 2012 .

[21]  BENJ HELLIE Philosophical Theories of Consciousness , 2006 .

[22]  Giorgio A. Ascoli,et al.  Brain and Mind at the Crossroad of Time , 2005, Cortex.

[23]  D. McDermott The Cambridge Handbook of Consciousness: Artificial Intelligence and Consciousness , 2007 .

[24]  Roger Penrose,et al.  Orchestrated Objective Reduction of Quantum Coherence in Brain Microtubules: The "Orch OR" Model for Consciousness , 1996 .

[25]  A. Raffone,et al.  A global workspace model for phenomenal and access consciousness , 2010, Consciousness and Cognition.

[26]  Giorgio A. Ascoli,et al.  The Conscious Self: Ontology, Epistemology and the Mirror Quest , 2005, Cortex.

[27]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[28]  M. Shanahan A cognitive architecture that combines internal simulation with a global workspace , 2006, Consciousness and Cognition.

[29]  Anil K. Seth,et al.  Axioms, properties and criteria: Roles for synthesis in the science of consciousness , 2008, Artif. Intell. Medicine.

[30]  Axel Cleeremans,et al.  Consciousness: mapping the theoretical landscape , 2000, Trends in Cognitive Sciences.

[31]  U. Lindenberger,et al.  Cognitive Development , 2014, Front. Young Minds..

[32]  J. G. Taylor,et al.  Does the corollary discharge of attention exist? , 2012, Consciousness and Cognition.

[33]  Stan Franklin,et al.  IDA, a Conscious Artifact? , 2006 .

[34]  Alexei V. Samsonovich,et al.  Fundamental Principles and Mechanisms of the Conscious Self , 2005, Cortex.

[35]  M. Buchsbaum,et al.  Regional glucose metabolic changes after learning a complex visuospatial/motor task: a positron emission tomographic study , 1992, Brain Research.

[36]  Tadashi Kitamura,et al.  How can a robot have consciousness? , 2000, Adv. Robotics.

[37]  Susan Pockett Difficulties with the Electromagnetic Field Theory of Consciousness: An Update , 2007 .

[38]  Vernor Vinge,et al.  ==================================================================== the Coming Technological Singularity: How to Survive in the Post-human Era , 2022 .

[39]  James A. Reggia,et al.  Emergent latent symbol systems in recurrent neural networks , 2012, Connect. Sci..

[40]  G. Tononi Consciousness as Integrated Information: a Provisional Manifesto , 2008, The Biological Bulletin.

[41]  John G. Taylor,et al.  CODAM: A neural network model of consciousness , 2007, Neural Networks.

[42]  Ron Sun,et al.  Learning, action and consciousness: a hybrid approach toward modelling consciousness , 1997, Neural Networks.

[43]  Benjamin Kuipers,et al.  Consciousness: Drinking from the Firehose of Experience , 2005, AAAI.

[44]  A. Graesser,et al.  A Software Agent Model of Consciousness , 1999, Consciousness and Cognition.

[45]  Ron Sun,et al.  Hierarchical approaches to understanding consciousness , 2007, Neural Networks.

[46]  Victor Lesser,et al.  IN THE HEARSAY-II SPEECH UNDERSTANDING SYSTEM , 1976 .

[47]  Ricardo Ribeiro Gudwin,et al.  A COGNITIVE ARCHITECTURE WITH INCREMENTAL LEVELS OF MACHINE CONSCIOUSNESS INSPIRED BY COGNITIVE NEUROSCIENCE , 2012 .

[48]  Lee McCauley,et al.  Demonstrating the Benefit of Computational Consciousness , 2007, AAAI Fall Symposium: AI and Consciousness.

[49]  J. Changeux,et al.  A neuronal network model linking subjective reports and objective physiological data during conscious perception , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[51]  V. Lamme Why visual attention and awareness are different , 2003, Trends in Cognitive Sciences.

[52]  S Dehaene,et al.  A neuronal model of a global workspace in effortful cognitive tasks. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Pentti O. A. Haikonen,et al.  Consciousness and Robot Sentience , 2012, Series on Machine Consciousness.

[54]  Andrew R. A. Conway,et al.  On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes , 2005, Cognitive Psychology.

[55]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[56]  S. Shipp The brain circuitry of attention , 2004, Trends in Cognitive Sciences.

[57]  Giorgio C. Buttazzo,et al.  Artificial consciousness: Hazardous questions (and answers) , 2008, Artif. Intell. Medicine.

[58]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[59]  J A Reggia,et al.  Controlling working memory with learned instructions. , 2013, Neural networks : the official journal of the International Neural Network Society.

[60]  Germund Hesslow,et al.  The inner world of a simple robot , 2007 .

[61]  John G. Taylor Paying attention to consciousness , 2003, Progress in Neurobiology.

[62]  J. Stevens,et al.  The Origin of Consciousness in the Breakdown of the Bicameral Mind by , 1978, Neurology.

[63]  Bartlomiej Swiatczak,et al.  Conscious Representations: An Intractable Problem for the Computational Theory of Mind , 2011, Minds and Machines.

[64]  Ryan Tonkens,et al.  A Challenge for Machine Ethics , 2009, Minds and Machines.

[65]  A. Koeppen Plum and Posner's Diagnosis of Stupor and Coma, Fourth edition, J.B. Posner, C.F. Saper, N.D. Schiff, F Plum. Oxford University Press, Oxford and New York (2007), ISBN 978-0-19-532131-1, 401 pages, US$ 79.50 , 2008 .

[66]  R. Manzotti,et al.  Introduction: Artificial Intelligence and Consciousness , 2007, AAAI Fall Symposium: AI and Consciousness.

[67]  James A. Reggia,et al.  Systematically Grounding Language through Vision in a Deep, Recurrent Neural Network , 2011, AGI.

[68]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[69]  Giulio Tononi,et al.  Integrated Information in Discrete Dynamical Systems: Motivation and Theoretical Framework , 2008, PLoS Comput. Biol..

[70]  Adrian M. Owen,et al.  The Quest for Consciousness , 2011 .

[71]  Kenneth A. De Jong,et al.  A General-Purpose Computational Model of the Conscious Mind , 2004, ICCM.

[72]  David Gamez,et al.  EMPIRICALLY GROUNDED CLAIMS ABOUT CONSCIOUSNESS IN COMPUTERS , 2012 .

[73]  Nabila Charkaoui,et al.  A Computational Model of Minimal Consciousness Functions , 2007 .

[74]  Araceli Sanchis,et al.  THE COGNITIVE DEVELOPMENT OF MACHINE CONSCIOUSNESS IMPLEMENTATIONS , 2010 .

[75]  Araceli Sanchis,et al.  CERA-CRANIUM: a test bed for machine consciousness research , 2009 .

[76]  C. Mattei,et al.  Julian Jaynes. The Origin of Consciousness in the Breakdown of the Bicameral Mind. Boston: Houghton Mifflin Co., 1978. , 1988 .

[77]  Edmund T. Rolls,et al.  Consciousness in Neural Networks? , 1997, Neural Networks.

[78]  Roger Penrose,et al.  Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness , 1996 .

[79]  Byoung-Kyong Min,et al.  A thalamic reticular networking model of consciousness , 2010, Theoretical Biology and Medical Modelling.

[80]  John G. Taylor,et al.  Neural networks for consciousness , 1997, Neural Networks.

[81]  Georges Rey,et al.  A Reason for Doubting the Existence of Consciousness , 1983 .

[82]  R. Newcombe Consciousness , 1996, Journal of Clinical Neuroscience.

[83]  Axel Cleeremans,et al.  Consciousness and metarepresentation: A computational sketch , 2007, Neural Networks.

[84]  Giulio Tononi,et al.  Integrated information theory , 2015, Scholarpedia.

[85]  G. G. Gallop Chimpanzees: self-recognition. , 1970, Science.

[86]  John G. Taylor,et al.  Resolving some confusions over attention and consciousness , 2007, Neural Networks.

[87]  Usef Faghihi,et al.  Global Workspace Theory, its LIDA model and the underlying neuroscience , 2012, BICA 2012.

[88]  H. Stapp Mind, matter, and quantum mechanics , 1982 .

[89]  Pentti O. A. Haikonen Robot Brains: Circuits and Systems for Conscious Machines , 2007 .

[90]  Jun'ichi Takeno,et al.  MoNAD structure and the self-awareness , 2011, BICA.

[91]  Geraint Rees,et al.  Neural correlates of consciousness in humans , 2002, Nature Reviews Neuroscience.

[92]  D. Gamez Progress in machine consciousness , 2008, Consciousness and Cognition.

[93]  Benjamin Kuipers,et al.  Drinking from the firehose of experience , 2008, Artif. Intell. Medicine.

[94]  L. M. Ward,et al.  The thalamic dynamic core theory of conscious experience , 2011, Consciousness and Cognition.

[95]  J B Poline,et al.  Cerebral mechanisms of word masking and unconscious repetition priming , 2001, Nature Neuroscience.

[96]  Tibor Bosse,et al.  Formalisation of Damasio’s theory of emotion, feeling and core consciousness , 2008, Consciousness and Cognition.

[97]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[98]  Geraint Rees,et al.  The Neural Correlates of Consciousness , 2003 .

[99]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Hod Lipson,et al.  Resilient Machines Through Continuous Self-Modeling , 2006, Science.

[101]  Bernard Molyneux,et al.  How the Problem of Consciousness Could Emerge in Robots , 2012, Minds and Machines.

[102]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .

[103]  M Steriade,et al.  Arousal--Revisiting the Reticular Activating System , 1996, Science.

[104]  C. Koch,et al.  Attention and consciousness: two distinct brain processes , 2007, Trends in Cognitive Sciences.

[105]  Cecilia Wong,et al.  The Conscious Mind , 2015, Leonardo.

[106]  N. Block Two neural correlates of consciousness , 2005, Trends in Cognitive Sciences.

[107]  Catalin V. Buhusi,et al.  The Transition from Automatic to Controlled Processing , 1997, Neural Networks.

[108]  D. Long Networks of the Brain , 2011 .

[109]  S. Edelman,et al.  Towards a computational theory of experience , 2011, Consciousness and Cognition.

[110]  Basileios Kroustallis,et al.  Blindsight , 2007, Scholarpedia.

[111]  Axel Cleeremans,et al.  The Oxford Companion to Consciousness , 2009 .

[112]  Salvatore Gaglio,et al.  A cognitive architecture for robot self-consciousness , 2008, Artif. Intell. Medicine.

[113]  Erich Harth A Theory of Consciousness, Perception, and Imagery , 1995, Consciousness and Cognition.

[114]  Ricardo Sanz Bravo,et al.  Consciousness, Action Selection, Meaning and Phenomenic Anticipation , 2012 .

[115]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[116]  Alexei V. Samsonovich Universal Learner as an Embryo of Computational Consciousness , 2007, AAAI Fall Symposium: AI and Consciousness.

[117]  Anne Treisman,et al.  Attention: Theoretical and psychological perspectives. , 2009 .

[118]  Ron Sun,et al.  Accounting for the Computational Basis of Consciousness: A Connectionist Approach , 1999, Consciousness and Cognition.

[119]  Wulfram Gerstner,et al.  Consciousness & the small network argument , 2007, Neural Networks.

[120]  Anil K. Seth,et al.  Consciousness and Complexity , 2022 .

[121]  Robert Howell,et al.  Hard problem of consciousness , 2009, Scholarpedia.

[122]  Bernard J. Baars,et al.  CONSCIOUSNESS IS COMPUTATIONAL: THE LIDA MODEL OF GLOBAL WORKSPACE THEORY , 2009 .

[123]  D. Perlis CONSCIOUSNESS AS SELF-FUNCTION , 1997 .

[124]  T. Nagel Mortal Questions: What is it like to be a bat? , 2012 .

[125]  Jerry R. Hobbs,et al.  Anthropomorphic Self-Models for Metareasoning Agents , 2011, Metareasoning.

[126]  Lee McCauley,et al.  LIDA: A Computational Model of Global Workspace Theory and Developmental Learning , 2007, AAAI Fall Symposium: AI and Consciousness.

[127]  Alice C. Parker,et al.  Challenges for Brain Emulation: Why is it so Difficult? , 2012 .

[128]  Olaf Sporns,et al.  Measuring information integration , 2003, BMC Neuroscience.

[129]  Brian Scassellati,et al.  Robotic Models of Self , 2011, Metareasoning.

[130]  R. Penrose,et al.  Conscious Events as Orchestrated Space-Time Selections , 1996 .

[131]  Chris J. Tinsley Using topographic networks to build a representation of consciousness , 2008, Biosyst..

[132]  David Gamez,et al.  Information integration based predictions about the conscious states of a spiking neural network , 2010, Consciousness and Cognition.

[133]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[134]  D. Dulany,et al.  Consciousness and agency: Explaining what and explaining who , 1999, Behavioral and Brain Sciences.

[135]  Marvin Minsky,et al.  Matter, Mind and Models , 1965 .

[136]  J. Kevin O'Regan,et al.  How to Build a Robot that is Conscious and Feels , 2012, Minds and Machines.

[137]  S. Dehaene,et al.  Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework , 2001, Cognition.

[138]  R. Wallace Consciousness: A Mathematical Treatment of the Global Neuronal Workspace Model , 2005 .

[139]  Christoph Adami,et al.  What Do Robots Dream Of? , 2006, Science.

[140]  Richard H. Schlagel Why not Artificial Consciousness or Thought? , 1999, Minds and Machines.

[141]  Raymond C. Kurzweil,et al.  The Singularity Is Near , 2018, The Infinite Desire for Growth.

[142]  Joanna J. Bryson,et al.  A ROLE FOR CONSCIOUSNESS IN ACTION SELECTION , 2011 .

[143]  G. Tononi,et al.  Breakdown of Cortical Effective Connectivity During Sleep , 2005, Science.

[144]  G. Tononi An information integration theory of consciousness , 2004, BMC Neuroscience.

[145]  Anil K Seth,et al.  Theories and measures of consciousness: an extended framework. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[146]  Marvin Minsky,et al.  Semantic Information Processing , 1968 .

[147]  James A. Reggia,et al.  Cognitive control as a gated cortical net , 2011, BICA.

[148]  G. Hesslow Conscious thought as simulation of behaviour and perception , 2002, Trends in Cognitive Sciences.

[149]  Norman D. Cook,et al.  Simulating Consciousness in a Bilateral Neural Network: “Nuclear” and “Fringe” Awareness , 1999, Consciousness and Cognition.

[150]  T. Shallice A theory of consciousness. , 1979, Science.

[151]  C. Koch,et al.  Can machines be conscious? , 2008, IEEE Spectrum.

[152]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[153]  Valerie J. Palm Putting the Puzzle Together , 2003 .

[154]  B. Baars A cognitive theory of consciousness , 1988 .

[155]  F. Crick The Astonishing Hypothesis , 1994 .

[156]  Michael T. Cox Perpetual Self-Aware Cognitive Agents , 2007, AI Mag..

[157]  Riccardo Manzotti,et al.  THE COMPUTATIONAL STANCE IS UNFIT FOR CONSCIOUSNESS , 2012 .

[158]  Joseph Jastrow,et al.  The mechanism of consciousness. , 2022 .

[159]  Mark Bishop,et al.  Why Computers Can’t Feel Pain , 2009, Minds and Machines.

[160]  B. Baars,et al.  Brain, conscious experience and the observing self , 2003, Trends in Neurosciences.

[161]  Danny Hillis,et al.  The Pattern on the Stone , 1998 .

[162]  M. Shanahan A spiking neuron model of cortical broadcast and competition , 2008, Consciousness and Cognition.

[163]  Michael M. Cox Metareasoning, Monitoring, and Self-Explanation , 2011, Metareasoning.

[164]  Christof Koch,et al.  A Theory of Consciousness , 2009 .

[165]  A. Seth Post-decision wagering measures metacognitive content, not sensory consciousness , 2008, Consciousness and Cognition.

[166]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[167]  M. Safan,et al.  Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A (H1N1) 2009 , 2010, Theoretical Biology and Medical Modelling.

[168]  Ron Sun,et al.  Duality of the Mind , 2002 .

[169]  Igor Aleksander,et al.  Phenomenology and digital neural architectures , 2007, Neural Networks.

[170]  U. Ramamurthy,et al.  Self-system in a model of cognition , 2012 .

[171]  C. Koch,et al.  A framework for consciousness , 2003, Nature Neuroscience.

[172]  Axel Cleeremans,et al.  Know thyself: Metacognitive networks and measures of consciousness , 2010, Cognition.

[173]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[174]  B. Baars The conscious access hypothesis: origins and recent evidence , 2002, Trends in Cognitive Sciences.

[175]  Igor Aleksander,et al.  Informational theories of consciousness: a review and extension. , 2011, Advances in experimental medicine and biology.

[176]  G. Schwartz,et al.  Consciousness and Self-Regulation , 1976 .

[177]  Sung-Bae Cho,et al.  A Neural Global Workspace Model for Conscious Attention , 1997, Neural Networks.

[178]  J. Karbach,et al.  Making Working Memory Work , 2014, Psychological science.

[179]  L. Andrew Coward,et al.  Implications of resource limitations for a conscious machine , 2009, Neurocomputing.

[180]  Subhash Kak,et al.  Machines and Consciousness , 2004 .

[181]  E. John The neurophysics of consciousness , 2002, Brain Research Reviews.

[182]  S. Schneider,et al.  The Blackwell Companion to Consciousness , 2007, Consciousness and Experience.

[183]  Michael Hogan Consciousness of brain , 2006 .

[184]  Stephen Cass The Singularity , 2012, IEEE Spectrum.

[185]  P. Haikonen The Cognitive Approach to Conscious Machines , 2003 .

[186]  J. Keenan,et al.  The Right Hemisphere and the Dark Side of Consciousness , 2005, Cortex.

[187]  Niels Kjølstad Poulsen,et al.  Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook , 2000 .

[188]  Edmund T. Rolls,et al.  2007 Special Issue: A computational neuroscience approach to consciousness , 2007 .

[189]  Murray Shanahan,et al.  A computational model of a global neuronal workspace with stochastic connections , 2010, Neural Networks.

[190]  James A. Reggia,et al.  Modeling of visuospatial perspectives processing and modulation of the fronto-parietal network activity during action imitation , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[191]  Ben Goertzel,et al.  HYPERSET MODELS OF SELF, WILL AND REFLECTIVE CONSCIOUSNESS , 2011 .

[192]  Russell Conduit,et al.  To Sleep, Perchance to Dream , 2007, Science.

[193]  B. Scassellati,et al.  A Bayesian Robot That Distinguishes "Self" from "Other" , 2007 .

[194]  J. Takeno A Robot Succeeds in 100% Mirror Image Cognition , 2008 .

[195]  R. Cotterill CyberChild - A simulation test-bed for consciousness studies , 2003 .

[196]  James A. Reggia,et al.  Guiding Hidden Layer Representations for Improved Rule Extraction From Neural Networks , 2011, IEEE Transactions on Neural Networks.

[197]  James A. Reggia,et al.  Symbolic Representation of Recurrent Neural Network Dynamics , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[198]  B. Dunmall Axioms and Tests for the Presence of Minimal Consciousness in Agents , 2003 .

[199]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[200]  J. Sjöberg Neural networks for modelling and control of dynamic systems: M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen. Springer-Verlag, London Berlin Heidelberg, 2000, pp. xiv+246 , 2004 .

[201]  Aaron Sloman,et al.  Virtual Machines and Consciousness , 2003 .

[202]  Victor R. Lesser,et al.  The Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty , 1980, CSUR.

[203]  Aaron Sloman,et al.  PHENOMENAL AND ACCESS CONSCIOUSNESS AND THE "HARD" PROBLEM: A VIEW FROM THE DESIGNER STANCE , 2010 .

[204]  Janusz A. Starzyk,et al.  A COMPUTATIONAL MODEL OF MACHINE CONSCIOUSNESS , 2011 .