Information-theoretic significance of the Wigner distribution

A coarse-grained Wigner distribution p(W)(x,mu) obeying positivity derives out of information-theoretic considerations. Let p(x,mu) be the unknown joint probability density function (PDF) on position and momentum fluctuations x, mu for a particle in a pure state psi(x). Suppose that the phase part Psi(x,z) of its Fourier transform T-F[p(x,mu)]equivalent to parallel to G(x,z)parallel to exp[i Psi(x,z)] is constructed as a hologram. (Such a hologram is often used in heterodyne interferometry.) Consider a particle randomly illuminating this phase hologram. Let its two position coordinates be measured. Require that the measurements contain an extreme amount of Fisher information about true position, through variation of the phase function Psi(x,z). The extremum solution gives an output PDF p(x,mu) that is the convolution of the Wigner p(W)(x,mu) with an instrument function defining uncertainty in either position x or momentum mu. The convolution arises naturally out of the approach, and is one dimensional, in comparison with the ad hoc two-dimensional convolutions usually proposed for coarse graining purposes. The output obeys positivity, as required of a PDF, if the one-dimensional instrument function is sufficiently wide. The result holds for a large class of systems: those whose amplitudes psi(x) are the same at their boundaries [examples: states psi(x) with positive parity; with periodic boundary conditions; free particle trapped in a box].

[1]  B. Frieden,et al.  Lagrangians of physics and the game of Fisher-information transfer. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Xiang-Gen Xia,et al.  On generalized-marginal time-frequency distributions , 1996, IEEE Trans. Signal Process..

[3]  E. B. Davies Quantum theory of open systems , 1976 .

[4]  R. Thalmann,et al.  Automated Evaluation Of 3-D Displacement And Strain By Quasi-Heterodyne Holographic Interferometry , 1986, Other Conferences.

[5]  B. Frieden,et al.  Physics from Fisher Information by B. Roy Frieden , 1998 .

[6]  A Wax,et al.  Optical heterodyne imaging and Wigner phase space distributions. , 1996, Optics letters.

[7]  Robert A. Gatenby,et al.  Exploratory Data Analysis Using Fisher Information , 2006 .

[8]  David A. Lavis,et al.  Physics from Fisher information , 2002 .

[9]  H. Gies,et al.  Pair production in inhomogeneous fields , 2005, hep-ph/0505099.

[10]  A. Lohmann,et al.  RELATIONSHIPS BETWEEN THE RADON-WIGNER AND FRACTIONAL FOURIER TRANSFORMS , 1994 .

[11]  D. Voelz,et al.  Multiple wavelength heterodyne array interferometry. , 1997, Optics express.

[12]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[13]  Dorian Kermisch,et al.  Image Reconstruction from Phase Information Only , 1970 .

[14]  Stephen A. Benton,et al.  Holographic Displays: 1975-1980 , 1980 .

[15]  Andrés Márquez,et al.  Production of computer-generated phase holograms using graphic devices: application to correlation filters , 2000 .

[16]  N. Cartwright A non-negative Wigner-type distribution☆ , 1976 .

[17]  Jos Uffink,et al.  The joint measurement problem , 1993 .

[18]  K. Wódkiewicz,et al.  Operational Approach to Phase-Space Measurements in Quantum Mechanics , 1984 .

[19]  P. Hariharan,et al.  Quasi- heterodyne hologram interferometry , 1985 .

[20]  Nuno Costa Dias,et al.  Admissible states in quantum phase space , 2004 .

[21]  Alexander Jesacher,et al.  Spiral phase contrast imaging in microscopy. , 2005, Optics express.

[22]  C. Vest Holographic Interferometry , 1979 .

[23]  V. I. Tatarskii,et al.  The Wigner representation of quantum mechanics , 1983 .

[24]  B. Roy Frieden BOOK REVIEW: Probability, Statistical Optics, and Data Testing, 3rd edn , 1985 .