Facet Connectedness of Discrete Hyperplanes with Zero Intercept: The General Case
暂无分享,去创建一个
[1] Xavier Provençal,et al. Fully Subtractive Algorithm, Tribonacci numeration and connectedness of discrete planes (Numeration and Substitution 2012) , 2014 .
[2] Laurent Vuillon,et al. Geometric Palindromic Closure , 2012 .
[3] Valentin E. Brimkov,et al. Connectivity of discrete planes , 2004, Theor. Comput. Sci..
[4] Jean-Luc Toutant,et al. On the Connecting Thickness of Arithmetical Discrete Planes , 2009, DGCI.
[5] Arnaldo Nogueira,et al. Multidimensional Continued Fractions. By Fritz Schweiger. Oxford Science Publications , 2002, Ergodic Theory and Dynamical Systems.
[6] Fritz Schweiger,et al. Multidimensional continued fractions , 2000 .
[7] Jean-Pierre Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .
[8] Xavier Provençal,et al. Critical Connectedness of Thin Arithmetical Discrete Planes , 2013, DGCI.
[9] Ronald W. J. Meester. An algorithm for calculating critical probabilities and percolation functions in percolation models defined by rotations , 1989 .
[10] Eric Andres,et al. Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..
[11] Jean-Luc Toutant,et al. Minimal arithmetic thickness connecting discrete planes , 2009, Discret. Appl. Math..
[12] Cor Kraaikamp,et al. Ergodic properties of a dynamical system arising from percolation theory , 1995, Ergodic Theory and Dynamical Systems.