Peptide-polymer conjugates: from fundamental science to application.

Peptide/protein-polymer conjugates make up a new class of soft matter comprising natural and synthetic building blocks. They have the potential to combine the advantages of proteins and synthetic polymers (i.e., the precise chemical structure and diverse functionalities of biomolecules and the stability and processability of synthetic polymers) to generate hybrid materials with properties yet to be realized with either component alone. Here we briefly discuss recent developments in the design, fundamental understanding, and self-assembly of various peptide-polymer conjugates, as well as emerging biological and nonbiological applications that range from nanomedicine, to separation, and beyond.

[1]  P. Björk,et al.  Supramolecular assembly of designed α-helical polypeptide-based nanostructures and luminescent conjugated polyelectrolytes. , 2010, Macromolecular bioscience.

[2]  S. Harding,et al.  Effect of PEGylation on the solution conformation of antibody fragments. , 2008, Journal of pharmaceutical sciences.

[3]  R. Nolte,et al.  Cascade reactions in an all-enzyme nanoreactor. , 2009, Chemistry.

[4]  T. Shimada,et al.  Impact of polyplex micelles installed with cyclic RGD peptide as ligand on gene delivery to vascular lesions , 2011, Gene Therapy.

[5]  J. Kopeček,et al.  Self-assembling diblock copolymers of poly[N-(2-hydroxypropyl)methacrylamide] and a beta-sheet peptide. , 2009, Macromolecular bioscience.

[6]  Francesco M Veronese,et al.  PEGylation, successful approach to drug delivery. , 2005, Drug discovery today.

[7]  F. Bates,et al.  Giant wormlike rubber micelles , 1999, Science.

[8]  A. Hoffman,et al.  Temperature control of biotin binding and release with A streptavidin-poly(N-isopropylacrylamide) site-specific conjugate. , 1999, Bioconjugate chemistry.

[9]  H. Klok,et al.  Reversible self-organization of poly(ethylene glycol)-based hybrid block copolymers mediated by a De Novo four-stranded α-helical coiled coil motif , 2003 .

[10]  K. Kataoka,et al.  Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers , 2006 .

[11]  U. Olsson,et al.  PEGylated amyloid peptide nanocontainer delivery and release system. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[12]  J. Kopeček,et al.  Synthesis and activity of a polymer which contains insulin covalently bound on a copolymer of N-(2-hydroxypropyl)methacrylamide and N-methacryloyldiglycyl p-nitrophenyl ester , 1978 .

[13]  K. Kataoka,et al.  PEG‐based Polyplex Design for Gene and Nucleotide Delivery , 2010 .

[14]  Sébastien Lecommandoux,et al.  Self-Assembly of Peptide-Based Diblock Oligomers , 2000 .

[15]  Thomas J. Dawidczyk,et al.  Aligned Macroscopic Domains of Optoelectronic Nanostructures Prepared via Shear‐Flow Assembly of Peptide Hydrogels , 2011, Advanced materials.

[16]  G. Saab-Rincón,et al.  High temperature biocatalysis by chemically modified cytochrome C. , 2002, Bioconjugate chemistry.

[17]  R. Nolte,et al.  Synthesis and aggregation behavior of biohybrid amphiphiles composed of a tripeptidic head group and a polystyrene tail , 2009 .

[18]  D. A. Baker,et al.  Solution structure of poly(ethylene) glycol-conjugated hemoglobin revealed by small-angle X-ray scattering: implications for a new oxygen therapeutic. , 2008, Biophysical journal.

[19]  A. Baas,et al.  FDA-approved poly(ethylene glycol)–protein conjugate drugs , 2011 .

[20]  Erinc Sahin,et al.  Macromolecule-induced assembly of coiled-coils in alternating multiblock polymers. , 2009, Biomacromolecules.

[21]  G. Jeschke,et al.  Structure and dynamics of self-assembled poly(ethylene glycol) based coiled-coil nano-objects. , 2004, ChemPhysChem.

[22]  D. Pochan,et al.  Toroidal Triblock Copolymer Assemblies , 2004, Science.

[23]  Van Hest Biosynthetic-Synthetic Polymer Conjugates , 2007 .

[24]  A. Hoffman,et al.  Preparation and properties of thermoreversible, phase-separating enzyme-oligo(N-isopropylacrylamide) conjugates. , 1993, Bioconjugate chemistry.

[25]  K. Kataoka,et al.  Multifunctional nanoassemblies of block copolymers for future cancer therapy , 2010, Science and technology of advanced materials.

[26]  H. Klok,et al.  From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly(diene-b-peptide) diblock copolymers , 2003, The European physical journal. E, Soft matter.

[27]  Kazunori Kataoka,et al.  Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications , 2001 .

[28]  H. Börner,et al.  Biotransformation on polymer-peptide conjugates: a versatile tool to trigger microstructure formation. , 2009, Angewandte Chemie.

[29]  T. Deming,et al.  Polypeptide Materials: New synthetic methods and applications , 1997 .

[30]  J. M. Harris,et al.  Pegylation: a novel process for modifying pharmacokinetics. , 2001, Clinical pharmacokinetics.

[31]  Sébastien Lecommandoux,et al.  Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. , 2005, Journal of the American Chemical Society.

[32]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[33]  R. Nolte,et al.  Lipase polystyrene giant amphiphiles. , 2002, Journal of the American Chemical Society.

[34]  J. Tovar,et al.  One-dimensional optoelectronic nanostructures derived from the aqueous self-assembly of pi-conjugated oligopeptides. , 2008, Journal of the American Chemical Society.

[35]  T. Park,et al.  Conjugates of stimuli‐responsive polymers and biomolecules: Random and site‐specific conjugates of temperature‐sensitive polymers and proteins , 1997 .

[36]  W. DeGrado,et al.  New design of helix bundle peptide-polymer conjugates. , 2008, Biomacromolecules.

[37]  B. Le Droumaguet,et al.  In situ ATRP-mediated hierarchical formation of giant amphiphile bionanoreactors. , 2008, Angewandte Chemie.

[38]  J. Kopeček,et al.  HPMA copolymers: origins, early developments, present, and future. , 2010, Advanced drug delivery reviews.

[39]  H. Klok,et al.  Solid-State Structure, Organization and Properties of Peptide-Synthetic Hybrid Block Copolymers , 2007 .

[40]  P. Dawson,et al.  Synthesis of native proteins by chemical ligation. , 2000, Annual review of biochemistry.

[41]  S. Milam,et al.  Protein interactions with particulate Teflon: implications for the foreign body response. , 1996, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[42]  R. Nolte,et al.  Aggregation behavior of giant amphiphiles prepared by cofactor reconstitution. , 2006, Chemistry.

[43]  Craig J. Hawker,et al.  Block Copolymer Lithography: Merging “Bottom-Up” with “Top-Down” Processes , 2005 .

[44]  H. Börner Functional Polymer‐Bioconjugates as Molecular LEGO® Bricks , 2007 .

[45]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[46]  A. Khokhlov,et al.  Self-organizing bioinspired oligothiophene–oligopeptide hybrids , 2011, Beilstein journal of nanotechnology.

[47]  Lifeng Zhang,et al.  Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers , 1995, Science.

[48]  H. Klok,et al.  Peptide Hybrid Polymers , 2006 .

[49]  R. Chapman,et al.  Synthetic Strategies for the Design of Peptide/Polymer Conjugates , 2011 .

[50]  D. Sogah,et al.  Nanostructure Formation through β-Sheet Self-Assembly in Silk-Based Materials , 2001 .

[51]  Ting Xu,et al.  Amphiphilic peptide-polymer conjugates based on the coiled-coil helix bundle. , 2010, Biomacromolecules.

[52]  Ting Xu,et al.  Long-circulating 15 nm micelles based on amphiphilic 3-helix peptide-PEG conjugates. , 2012, ACS nano.

[53]  A. Khokhlov,et al.  Self-assembling nanofibers from thiophene-peptide diblock oligomers: a combined experimental and computer simulations study. , 2011, ACS nano.

[54]  I. Hamley,et al.  Self-assembly of an amyloid peptide fragment–PEG conjugate: lyotropic phase formation and influence of PEG crystallization , 2010 .

[55]  M. Antonietti,et al.  Structure formation of a polystyrene-block-poly(gamma-benzyl L-glutamate) in thin films , 2005 .

[56]  W. Norde,et al.  Thermal stability and enzymatic activity of α-chymotrypsin adsorbed on polystyrene surfaces , 1997 .

[57]  R. Duncan,et al.  PDEPT: polymer-directed enzyme prodrug therapy , 2001, British Journal of Cancer.

[58]  Frank S Bates,et al.  On the Origins of Morphological Complexity in Block Copolymer Surfactants , 2003, Science.

[59]  E. Harth,et al.  New polymer synthesis by nitroxide mediated living radical polymerizations. , 2001, Chemical reviews.

[60]  R. Lund,et al.  Solution structural characterization of coiled-coil peptide-polymer side-conjugates. , 2012, Biomacromolecules.

[61]  J. M. Harris,et al.  Effect of pegylation on pharmaceuticals , 2003, Nature Reviews Drug Discovery.

[62]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[63]  Kazunori Kataoka,et al.  Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. , 2009, Advanced drug delivery reviews.

[64]  J. M. Hannink,et al.  Protein-polymer hybrid amphiphiles , 2001 .

[65]  J. V. Van Alstine,et al.  Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. , 2004, Bioconjugate chemistry.

[66]  H. Ashbaugh,et al.  Helix stabilization of poly(ethylene glycol)-peptide conjugates. , 2011, Biomacromolecules.

[67]  T. Kinoshita,et al.  Molecular Orientation of Amphiphilic Bock Copolymer of Poly(peptide-co-ethylene glycol)at Air-Water Interface , 2000 .

[68]  I. Hamley,et al.  Multiple Lyotropic Polymorphism of a Poly(ethylene glycol)‐Peptide Conjugate in Aqueous Solution , 2008 .

[69]  Markus Antonietti,et al.  The formation of polymer vesicles or "peptosomes" by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution. , 2002, Journal of the American Chemical Society.

[70]  Lisa Joss,et al.  Associative diblock copolymers of poly(ethylene glycol) and coiled-coil peptides , 2002 .

[71]  A. Studer,et al.  Aggregation behaviour of peptide-polymer conjugates containing linear peptide backbones and multiple polymer side chains prepared by nitroxide-mediated radical polymerization. , 2011, Organic & biomolecular chemistry.

[72]  A. Pineda-Lucena,et al.  Polymer coiled-coil conjugates: potential for development as a new class of therapeutic "molecular switch". , 2011, Biomacromolecules.

[73]  Markus Antonietti,et al.  Vesicles and Liposomes: A Self‐Assembly Principle Beyond Lipids , 2003 .

[74]  Samarth Kulkarni,et al.  Photoresponsive polymer–enzyme switches , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[75]  A. Eisenberg,et al.  Preparation of block copolymer vesicles in solution , 2004 .

[76]  A. Demain,et al.  Production of recombinant proteins by microbes and higher organisms. , 2009, Biotechnology advances.

[77]  F. Baneyx,et al.  MATERIALS ASSEMBLY AND FORMATION USING ENGINEERED POLYPEPTIDES , 2004 .

[78]  S. Jenekhe,et al.  Block copolymers containing conjugated polymer and polypeptide sequences: Synthesis and self-assembly of electroactive and photoactive nanostructures , 2004 .

[79]  H. Klok,et al.  Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. , 2001, Advanced drug delivery reviews.

[80]  Samuel I Stupp,et al.  Molecular self-assembly into one-dimensional nanostructures. , 2008, Accounts of chemical research.

[81]  B. Sumerlin,et al.  Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via RAFT polymerization. , 2008, Journal of the American Chemical Society.

[82]  G. Mantovani,et al.  Formation of giant amphiphiles by post-functionalization of hydrophilic protein–polymer conjugates , 2007 .

[83]  R. Tilton,et al.  The conformation of the poly(ethylene glycol) chain in mono-PEGylated lysozyme and mono-PEGylated human growth hormone. , 2011, Bioconjugate chemistry.

[84]  H. Börner,et al.  Modern trends in polymer bioconjugates design , 2008 .

[85]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[86]  R. Nolte,et al.  Helical superstructures from charged Poly(styrene)-Poly(isocyanodipeptide) block copolymers , 1998, Science.

[87]  Ting Xu,et al.  Coiled-coil helix bundle, a peptide tertiary structural motif toward hybrid functional materials , 2010 .

[88]  H. Klok,et al.  Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. , 2002, Angewandte Chemie.

[89]  Ashutosh Chilkoti,et al.  Control of protein–ligand recognition using a stimuli-responsive polymer , 1995, Nature.

[90]  Alexander Kros,et al.  Noncovalent triblock copolymers based on a coiled-coil peptide motif. , 2008, Journal of the American Chemical Society.

[91]  Ting Xu,et al.  Amphiphilic peptide-polymer conjugates with side-conjugation. , 2011, Macromolecular rapid communications.

[92]  B. Gallot,et al.  Synthesis and structural study of block copolymers with a hydrophobic polyvinyl block and a hydrophilic polypeptide block: Copolymers polystyrene/poly(L‐lysine) and polybutadiene/poly(L‐lysine) , 1976 .

[93]  Russell J. Stewart,et al.  Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains , 1999, Nature.

[94]  K. Kataoka,et al.  Polymeric micelles from poly(ethylene glycol)–poly(amino acid) block copolymer for drug and gene delivery , 2009, Journal of The Royal Society Interface.

[95]  C. Alemán,et al.  Modeling the tetraphenylalanine-PEG hybrid amphiphile: from DFT calculations on the peptide to molecular dynamics simulations on the conjugate. , 2011, The journal of physical chemistry. B.

[96]  R. Duncan The dawning era of polymer therapeutics , 2003, Nature Reviews Drug Discovery.

[97]  Ting Xu,et al.  Directed co-assembly of heme proteins with amphiphilic block copolymers toward functional biomolecular materials , 2011 .

[98]  Kristi L Kiick,et al.  Protein‐ and peptide‐modified synthetic polymeric biomaterials , 2010, Biopolymers.

[99]  J. Kopeček,et al.  Covalent attachment of chymotrypsin to poly[N-(2-hydroxypropyl)methacrylamide] , 1981 .

[100]  D. Wirtz,et al.  Reversible hydrogels from self-assembling artificial proteins. , 1998, Science.

[101]  H. Börner,et al.  Oligothiophene Versus β‐Sheet Peptide: Synthesis and Self‐Assembly of an Organic Semiconductor‐Peptide Hybrid , 2009 .

[102]  Kui Yu,et al.  Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution , 1998 .

[103]  B. Helms,et al.  Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers. , 2011, ACS nano.

[104]  Larisa C Wu,et al.  Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds. , 2011, Biomaterials.

[105]  H. Börner,et al.  Bioinspired functional block copolymers. , 2007, Soft matter.

[106]  F. Veronese Peptide and protein PEGylation: a review of problems and solutions. , 2001, Biomaterials.

[107]  H. Börner,et al.  Calcium ions as bioinspired triggers to reversibly control the coil-to-helix transition in peptide-polymer conjugates , 2011 .

[108]  H. Klok,et al.  Peptide/protein hybrid materials: enhanced control of structure and improved performance through conjugation of biological and synthetic polymers. , 2004, Macromolecular bioscience.

[109]  N. Brandon,et al.  GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton , 1999, Nature.

[110]  David J. Pine,et al.  Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles , 2002, Nature.

[111]  D. Discher,et al.  Grafting short peptides onto polybutadiene-block-poly(ethylene oxide): a platform for self-assembling hybrid amphiphiles. , 2006, Angewandte Chemie.

[112]  Samuel I. Stupp,et al.  A Self-Assembly Pathway to Aligned Monodomain Gels , 2010, Nature materials.

[113]  Robin H. A. Ras,et al.  Controlled growth of silver nanoparticle arrays guided by a self-assembled polymer–peptide conjugate , 2010 .

[114]  Jindřich Kopeček,et al.  Hydrogels: From soft contact lenses and implants to self‐assembled nanomaterials , 2009 .

[115]  H. Schlaad Solution properties of polypeptide-based copolymers , 2006 .

[116]  V. Torchilin,et al.  Structure and design of polymeric surfactant-based drug delivery systems. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[117]  Masahiro Higuchi,et al.  Structure and Molecular Recognition Properties of a Poly(allylamine) Monolayer Containing Poly(l-alanine) Graft Chains , 2000 .

[118]  M. Davies,et al.  Responsive hybrid block co-polymer conjugates of proteins–controlled architecture to modulate substrate specificity and solution behaviour , 2011 .

[119]  Krzysztof Matyjaszewski,et al.  Controlled/living radical polymerization: Features, developments, and perspectives , 2007 .

[120]  J. Rodríguez-Hernández,et al.  Self-assembled nanostructures from peptide-synthetic hybrid block copolymers: complex, stimuli-responsive rod-coil architectures. , 2005, Faraday discussions.

[121]  Sébastien Lecommandoux,et al.  Self-Assembly of Rod−Coil Diblock Oligomers Based on α-Helical Peptides , 2001 .

[122]  I. Hamley,et al.  Peptide mediated formation of hierarchically organized solution and solid state polymer nanostructures. , 2005, Faraday discussions.

[123]  Holger Frauenrath,et al.  Development of a robust supramolecular method to prepare well-defined nanofibrils from conjugated molecules , 2012 .

[124]  J. M. Hannink,et al.  Giant amphiphiles by cofactor reconstitution. , 2002, Angewandte Chemie.

[125]  B. Olsen,et al.  Solid-state nanostructured materials from self-assembly of a globular protein-polymer diblock copolymer. , 2011, ACS nano.

[126]  B. Smarsly,et al.  The role of chain-length distribution in the formation of solid-state structures of polypeptide-based rod-coil block copolymers , 2004 .

[127]  B. Gallot,et al.  Block copolymers with a polyvinyl and a polypeptide block: factors governing the folding of the polypeptide chains , 1982 .

[128]  H. Maynard,et al.  Synthesis of protein-polymer conjugates. , 2007, Organic & biomolecular chemistry.

[129]  A. Holmes,et al.  Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. , 2011, Journal of the American Chemical Society.

[130]  V. Soldi,et al.  Small-Angle Neutron Scattering from Diblock Copolymer Poly(styrene-d8)-b-poly(γ-benzyl l-glutamate) Solutions: Rod−Coil to Coil−Coil Transition , 2003 .

[131]  B. Gallot,et al.  Block copolymers polybutadiene/poly(benzyl‐L‐glutamate) and polybutadiene/poly(N5‐hydroxypropylglutamine) preparation and structural study by X‐ray and electron microscopy , 1976 .

[132]  H. Börner,et al.  Self-assembled PEO-peptide nanotapes as ink for plotting nonwoven silica nanocomposites and mesoporous silica fiber networks , 2008 .

[133]  G. Fields,et al.  Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. , 2009, International journal of peptide and protein research.

[134]  H. Börner Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences , 2009 .

[135]  Harm-Anton Klok,et al.  Peptide/protein-polymer conjugates: synthetic strategies and design concepts. , 2008, Chemical communications.

[136]  K. Matyjaszewski,et al.  Functional polymers by atom transfer radical polymerization , 2001 .

[137]  R. Nolte,et al.  Self-assembled architectures from biohybrid triblock copolymers. , 2007, Journal of the American Chemical Society.

[138]  G. Findenegg,et al.  Structure, Stability, and Activity of Adsorbed Enzymes , 1997, Journal of colloid and interface science.

[139]  M. Antonietti,et al.  Solid-state morphologies of linear and bottlebrush-shaped polystyrene–poly(Z-l-lysine) block copolymers , 2002 .

[140]  Kazunori Kataoka,et al.  Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. , 2006, Pharmacology & therapeutics.

[141]  B. Smarsly,et al.  Solid-state structure of polypeptide-based rod-coil block copolymers: Folding of helices , 2004, The European physical journal. E, Soft matter.