Nonparametric denoising Signals of Unknown Local Structure, II: Nonparametric Regression Estimation
暂无分享,去创建一个
[1] A. Juditsky,et al. Nonparametric Denoising of Signals with Unknown Local Structure, I: Oracle Inequalities , 2008, 0809.0814.
[2] A. Goldenshluger. On Spatial Adaptive Estimation of Nonparametric Regression , 2004 .
[3] Michael Elad,et al. A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.
[4] Xiaoming Huo,et al. Beamlets and Multiscale Image Analysis , 2002 .
[5] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[6] Emmanuel J. Candès,et al. Curvelets and Curvilinear Integrals , 2001, J. Approx. Theory.
[7] Emmanuel J. Candès,et al. The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[8] David L. Donoho,et al. Ridge Functions and Orthonormal Ridgelets , 2001, J. Approx. Theory.
[9] D. Donoho. Sparse Components of Images and Optimal Atomic Decompositions , 2001 .
[10] David L. Donoho,et al. Orthonormal Ridgelets and Linear Singularities , 2000, SIAM J. Math. Anal..
[11] Arkadi Nemirovski,et al. Topics in Non-Parametric Statistics , 2000 .
[12] D. Donoho. Wedgelets: nearly minimax estimation of edges , 1999 .
[13] D. Donoho,et al. Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in Rn. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[14] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[15] Pierre Bernard,et al. Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXVI - 1996 , 1997 .
[16] E. Mammen,et al. Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors , 1997 .
[17] Arkadi Nemirovski,et al. Adaptive de-noising of signals satisfying differential inequalities , 1997, IEEE Trans. Inf. Theory.
[18] P. Massart,et al. From Model Selection to Adaptive Estimation , 1997 .
[19] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[20] D. L. Donoho,et al. Ideal spacial adaptation via wavelet shrinkage , 1994 .
[21] A. Tsybakov,et al. Minimax theory of image reconstruction , 1993 .
[22] A. Nemirovskii,et al. On nonparametric estimation of functions satisfying differential inequalities , 1992 .
[23] O. Lepskii. Asymptotically Minimax Adaptive Estimation. I: Upper Bounds. Optimally Adaptive Estimates , 1992 .
[24] W. Härdle. Applied Nonparametric Regression , 1992 .
[25] O. Lepskii. On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .
[26] Murray Rosenblatt,et al. Stochastic Curve Estimation , 1991 .
[27] G. Wahba. Spline Models for Observational Data , 1990 .
[28] Lucien Birgé. Approximation dans les espaces métriques et théorie de l'estimation , 1983 .
[29] C. J. Stone,et al. Optimal Rates of Convergence for Nonparametric Estimators , 1980 .
[30] O. V. Besov,et al. Integral representations of functions and imbedding theorems , 1978 .
[31] D. Politis,et al. Statistical Estimation , 2022 .