Nonparametric denoising Signals of Unknown Local Structure, II: Nonparametric Regression Estimation

We consider the problem of recovering of continuous multi-dimensional functions from the noisy observations over the regular grid. Our focus is at the adaptive estimation in the case when the function can be well recovered using a linear filter, which can depend on the unknown function itself. In the companion paper "Nonparametric Denoising of Signals with Unknown Local Structure, I: Oracle Inequalities" we have shown in the case when there exists an adapted time-invariant filter, which locally recovers "well" the unknown signal, there is a numerically efficient construction of an adaptive filter which recovers the signals "almost as well". In the current paper we study the application of the proposed estimation techniques in the non-parametric regression setting. Namely, we propose an adaptive estimation procedure for "locally well-filtered" signals (some typical examples being smooth signals, modulated smooth signals and harmonic functions) and show that the rate of recovery of such signals in the $\ell_p$-norm on the grid is essentially the same as that rate for regular signals with nonhomogeneous smoothness.

[1]  A. Juditsky,et al.  Nonparametric Denoising of Signals with Unknown Local Structure, I: Oracle Inequalities , 2008, 0809.0814.

[2]  A. Goldenshluger On Spatial Adaptive Estimation of Nonparametric Regression , 2004 .

[3]  Michael Elad,et al.  A generalized uncertainty principle and sparse representation in pairs of bases , 2002, IEEE Trans. Inf. Theory.

[4]  Xiaoming Huo,et al.  Beamlets and Multiscale Image Analysis , 2002 .

[5]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[6]  Emmanuel J. Candès,et al.  Curvelets and Curvilinear Integrals , 2001, J. Approx. Theory.

[7]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[8]  David L. Donoho,et al.  Ridge Functions and Orthonormal Ridgelets , 2001, J. Approx. Theory.

[9]  D. Donoho Sparse Components of Images and Optimal Atomic Decompositions , 2001 .

[10]  David L. Donoho,et al.  Orthonormal Ridgelets and Linear Singularities , 2000, SIAM J. Math. Anal..

[11]  Arkadi Nemirovski,et al.  Topics in Non-Parametric Statistics , 2000 .

[12]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[13]  D. Donoho,et al.  Tight frames of k-plane ridgelets and the problem of representing objects that are smooth away from d-dimensional singularities in Rn. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[15]  Pierre Bernard,et al.  Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXVI - 1996 , 1997 .

[16]  E. Mammen,et al.  Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors , 1997 .

[17]  Arkadi Nemirovski,et al.  Adaptive de-noising of signals satisfying differential inequalities , 1997, IEEE Trans. Inf. Theory.

[18]  P. Massart,et al.  From Model Selection to Adaptive Estimation , 1997 .

[19]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[20]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[21]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[22]  A. Nemirovskii,et al.  On nonparametric estimation of functions satisfying differential inequalities , 1992 .

[23]  O. Lepskii Asymptotically Minimax Adaptive Estimation. I: Upper Bounds. Optimally Adaptive Estimates , 1992 .

[24]  W. Härdle Applied Nonparametric Regression , 1992 .

[25]  O. Lepskii On a Problem of Adaptive Estimation in Gaussian White Noise , 1991 .

[26]  Murray Rosenblatt,et al.  Stochastic Curve Estimation , 1991 .

[27]  G. Wahba Spline Models for Observational Data , 1990 .

[28]  Lucien Birgé Approximation dans les espaces métriques et théorie de l'estimation , 1983 .

[29]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[30]  O. V. Besov,et al.  Integral representations of functions and imbedding theorems , 1978 .

[31]  D. Politis,et al.  Statistical Estimation , 2022 .