The redshift dependence of the structure of massive Λ cold dark matter haloes

We use two very large cosmological simulations to study how the density profiles of relaxedCDM dark halos depend on redshift and on halo mass. We confirm that these profiles deviate slightly but systematically from the NFW form and are better approximated by the empirical formula, dlog ρ/dlog r ∝ r � , first used by Einasto to fit star counts in the Milky Way. The best-fit value of the additional shape parameter, α, increases gradually with mass, from α ∼ 0.16 for present-day galaxy halos to α ∼ 0.3 for the rarest and most massive clusters. Halo concentrations depend only weakly on mass at z = 0, and this dependence weakens further at earlier times. At z ∼ 3 the average concentration of relaxed halos does not vary appreciably over the mass range accessible to our simulations (M ∼3×10 11 h −1 M⊙). Furthermore, in our biggest simulation, the average concentration of the most massive, relaxed halos is constant at h c200i ∼ 3.5 to 4 for 0 ≤ z ≤ 3. These results agree well with those of Zhao et al (2003b) and support the idea that halo densities reflect the density of the universe at the time they formed, as proposed by Navarro, Frenk & White (1997). With their original parameters, the NFW prescription overpredicts halo concentrations at high redshift. This shortcoming can be reduced by modifying the definition of halo formation time, although the evolution of the concentrations of Milky Way mass halos is still not reproduced well. In contrast, the much-used revisions of the NFW prescription by Bullock et al. (2001) and Eke, Navarro & Steinmetz (2001) predict a steeper drop in concentration at the highest masses and stronger evolution with redshift than are compatible with our numerical data. Modifying the parameters of these models can reduce the discrepancy at high masses, but the overly rapid redshift evolution remains. These results have important implications for currently planned surveys of distant clusters.

[1]  S. D. M. White,et al.  Understanding the halo-mass and galaxy-mass cross-correlation functions , 2007, 0709.3933.

[2]  Astronomy,et al.  The statistics of lambda CDM Halo Concentrations , 2007, 0706.2919.

[3]  B. Moore,et al.  Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment , 2006, astro-ph/0608157.

[4]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[5]  G. Holder,et al.  Likelihood Functions for Galaxy Cluster Surveys , 2006, astro-ph/0602251.

[6]  R. Wechsler,et al.  The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation , 2005, astro-ph/0512416.

[7]  B. Moore,et al.  Empirical Models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models , 2005, astro-ph/0509417.

[8]  N. Katz,et al.  On the origin of cold dark matter halo density profiles , 2005, astro-ph/0508624.

[9]  A. Babul,et al.  Semianalytical Dark Matter Halos and the Jeans Equation , 2005, astro-ph/0506571.

[10]  Walter Dehnen,et al.  Dynamical insight into dark matter haloes , 2005, astro-ph/0506528.

[11]  F. Prada,et al.  How Far Do They Go? The Outer Structure of Galactic Dark Matter Halos , 2005, astro-ph/0506432.

[12]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[13]  J. Navarro,et al.  A Universal Density Profile for Dark and Luminous Matter? , 2005, astro-ph/0502515.

[14]  J. Stadel,et al.  Convergence and scatter of cluster density profiles , 2004, astro-ph/0402267.

[15]  L. Verde,et al.  Evolution of the density profiles of dark matter haloes , 2003, astro-ph/0312544.

[16]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[17]  A. Klypin,et al.  Density Profiles of ΛCDM Clusters , 2003, astro-ph/0311062.

[18]  Y. Jing,et al.  Mass and Redshift Dependence of Dark Halo Structure , 2003, astro-ph/0309375.

[19]  Wayne Hu Self-consistency and calibration of cluster number count surveys for dark energy , 2003, astro-ph/0301416.

[20]  E. L. Robinson,et al.  The Baldwin Effect and Black Hole Accretion: A Spectral Principal Component Analysis of a Complete Quasar Sample , 2002, astro-ph/0211641.

[21]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[22]  J. Mohr,et al.  Importance of Cluster Structural Evolution in Using X-Ray and Sunyaev-Zeldovich Effect Galaxy Cluster Surveys to Study Dark Energy , 2002, astro-ph/0208002.

[23]  Y. Jing,et al.  Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.

[24]  R. Wechsler,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .

[25]  J. Navarro,et al.  The Phase-Space Density Profiles of Cold Dark Matter Halos , 2001, astro-ph/0104002.

[26]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[27]  J. Makino,et al.  Structure of Dark Matter Halos from Hierarchical Clustering , 2000, astro-ph/0306203.

[28]  J. Bullock,et al.  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.

[29]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[30]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[31]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[32]  Usa,et al.  Density profiles of dark matter haloes: diversity and dependence on environment , 1999, astro-ph/9906260.

[33]  Y. Jing The Density Profile of Equilibrium and Nonequilibrium Dark Matter Halos , 1999, astro-ph/9901340.

[34]  P. R. Wilson,et al.  The Internal Solar Rotation Rate Inferred from Combined GONG and LOWL Data , 1998 .

[35]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[36]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[37]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[38]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[39]  S. White,et al.  The Assembly of galaxies in a hierarchically clustering universe , 1994, astro-ph/9408067.

[40]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[41]  Joel R. Primack,et al.  Dynamical effects of the cosmological constant. , 1991 .

[42]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .