Analysis of neuroreceptor PET-data based on cytoarchitectonic maximum probability maps: a feasibility study
暂无分享,去创建一个
Simon B. Eickhoff | Katrin Amunts | Karl Zilles | Nicola Palomero-Gallagher | René Hurlemann | Christian Boy | Andreas Bauer | Philipp T. Meyer | Andreas Matusch | Wolfgang Maier | K. Amunts | K. Zilles | W. Maier | S. Eickhoff | N. Palomero-Gallagher | C. Boy | P. Meyer | R. Hurlemann | A. Bauer | A. Matusch
[1] A. Schleicher,et al. High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.
[2] Michael E. Phelps,et al. Quantitation in Positron Emission Computed Tomography , 1980 .
[3] P. Morosan,et al. Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.
[4] A. Schleicher,et al. 21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .
[5] A. Schüz. Cortical areas : unity and diversity , 2002 .
[6] Robert B. Innis,et al. SPECT Quantification of [123I]Iomazenil Binding to Benzodiazepine Receptors in Nonhuman Primates: I. Kinetic Modeling of Single Bolus Experiments , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
[7] Karl Zilles,et al. ANATOMICAL ORGANIZATION OF THE HUMAN AUDITORY CORTEX: CYTOARCHITECTURE AND TRANSMITTER RECEPTORS , 2005 .
[8] Wilhelm Hamkens,et al. Remote controlled one-step production of 18F labeled butyrophenone neuroleptics exemplified by the synthesis of n.c.a. [18F] N-methylspiperone , 1995 .
[9] Gwenn S. Smith,et al. Analyses of [18F]altanserin bolus injection PET data. II: Consideration of radiolabeled metabolites in humans , 2001, Synapse.
[10] A. Schleicher,et al. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.
[11] P. Morosan,et al. Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.
[12] Katrin Amunts,et al. 3 Architectonic Mapping of the Human Cerebral Cortex , 2002 .
[13] Terry M. Peters,et al. 3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.
[14] Alan C. Evans,et al. Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.
[15] K. Amunts,et al. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.
[16] A. Schleicher,et al. Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.
[17] K. Amunts,et al. Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.
[18] K. Zilles,et al. Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.
[19] D. Holt,et al. Analyses of [18F]altanserin bolus injection PET data. I: Consideration of radiolabeled metabolites in baboons , 2001, Synapse.
[20] C. Lemaire,et al. Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.
[21] J. Mazziotta,et al. Brain Mapping: The Methods , 2002 .
[22] E. Hoffman,et al. Quantitation in Positron Emission Computed Tomography: 1. Effect of Object Size , 1979, Journal of computer assisted tomography.
[23] J. Palacios,et al. Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors , 1987, Neuroscience.
[24] K. Zilles,et al. Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.
[25] V J Cunningham,et al. In vivo [11C] flumazenil‐PET correlates with ex vivo [3H] flumazenil autoradiography in hippocampal sclerosis , 1998, Annals of neurology.
[26] A. Schleicher,et al. The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.
[27] J. Seibyl,et al. SPECT measurement of benzodiazepine receptors in human brain with iodine-123-iomazenil: kinetic and equilibrium paradigms. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.
[28] Alan C. Evans,et al. Probabilistic cytoarchitectonic maps transformed into MNI space , 2003 .
[29] A. Schleicher,et al. Two different areas within the primary motor cortex of man , 1996, Nature.
[30] A. Schleicher,et al. Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.
[31] D. Charney,et al. Characterization of radioactive metabolites of 5-HT2A receptor PET ligand [18F]altanserin in human and rodent. , 1999, Nuclear medicine and biology.
[32] A. Schleicher,et al. Integration of microstructural and functional aspects of human somatosensory areas 3a, 3b, and 1 on the basis of a computerized brain atlas , 2001, Anatomy and Embryology.
[33] Olaf B. Paulson,et al. A database of [18F]-altanserin binding to 5-HT2A receptors in normal volunteers: normative data and relationship to physiological and demographic variables , 2004, NeuroImage.
[34] N. Volkow,et al. Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
[35] D. Collins,et al. Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.