Analysis of neuroreceptor PET-data based on cytoarchitectonic maximum probability maps: a feasibility study

Three-dimensional maximum probability maps (MPMs) of cytoarchitectonically defined cortical regions based on postmortem histological studies have recently been made available in the stereotaxic reference space of the Montreal Neurological Institute (MNI) single subject template. This permits the use of cytoarchitectonic maps for the analysis of functional in vivo datasets, including neuroreceptor positron emission tomography (PET) studies. In this feasibility study, we used 5-hydroxytryptamine 2A (5-HT2A) receptor PET to test the applicability of maximum cytoarchitectonic probability maps for quantitative analysis. As the outcome parameter, we extracted local distribution volume ratios (DVRs) from 19 cytoarchitectonically defined volumes of interest (VOIs) per hemisphere from five healthy subjects. The experimental design included a forward (‘PET to atlas‘ normalization) and a backward (‘atlas to PET’ normalization) procedure to double-check the stability of transformation and overlay. Resulting DVRs were compared with receptor densities (RDs) obtained from postmortem [3H]ketanserin autoradiography of multiple areas. Correlations between the bi-directional normalization procedures (r=0.89; 38 VOIs) as well as between in vivo and vitro data (nine VOIs; r=0.64 and r=0.47 for forward and backward procedure, respectively) suggest that the implementation of cytoarchitectonic maximum probability maps is a promising method for an accurate and observer-independent analysis of neuroreceptor PET data.

[1]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[2]  Michael E. Phelps,et al.  Quantitation in Positron Emission Computed Tomography , 1980 .

[3]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[4]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[5]  A. Schüz Cortical areas : unity and diversity , 2002 .

[6]  Robert B. Innis,et al.  SPECT Quantification of [123I]Iomazenil Binding to Benzodiazepine Receptors in Nonhuman Primates: I. Kinetic Modeling of Single Bolus Experiments , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  Karl Zilles,et al.  ANATOMICAL ORGANIZATION OF THE HUMAN AUDITORY CORTEX: CYTOARCHITECTURE AND TRANSMITTER RECEPTORS , 2005 .

[8]  Wilhelm Hamkens,et al.  Remote controlled one-step production of 18F labeled butyrophenone neuroleptics exemplified by the synthesis of n.c.a. [18F] N-methylspiperone , 1995 .

[9]  Gwenn S. Smith,et al.  Analyses of [18F]altanserin bolus injection PET data. II: Consideration of radiolabeled metabolites in humans , 2001, Synapse.

[10]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[11]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[12]  Katrin Amunts,et al.  3 Architectonic Mapping of the Human Cerebral Cortex , 2002 .

[13]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[14]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[15]  K. Amunts,et al.  The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.

[16]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[17]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[18]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[19]  D. Holt,et al.  Analyses of [18F]altanserin bolus injection PET data. I: Consideration of radiolabeled metabolites in baboons , 2001, Synapse.

[20]  C. Lemaire,et al.  Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[21]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[22]  E. Hoffman,et al.  Quantitation in Positron Emission Computed Tomography: 1. Effect of Object Size , 1979, Journal of computer assisted tomography.

[23]  J. Palacios,et al.  Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors , 1987, Neuroscience.

[24]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[25]  V J Cunningham,et al.  In vivo [11C] flumazenil‐PET correlates with ex vivo [3H] flumazenil autoradiography in hippocampal sclerosis , 1998, Annals of neurology.

[26]  A. Schleicher,et al.  The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.

[27]  J. Seibyl,et al.  SPECT measurement of benzodiazepine receptors in human brain with iodine-123-iomazenil: kinetic and equilibrium paradigms. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[28]  Alan C. Evans,et al.  Probabilistic cytoarchitectonic maps transformed into MNI space , 2003 .

[29]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[30]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[31]  D. Charney,et al.  Characterization of radioactive metabolites of 5-HT2A receptor PET ligand [18F]altanserin in human and rodent. , 1999, Nuclear medicine and biology.

[32]  A. Schleicher,et al.  Integration of microstructural and functional aspects of human somatosensory areas 3a, 3b, and 1 on the basis of a computerized brain atlas , 2001, Anatomy and Embryology.

[33]  Olaf B. Paulson,et al.  A database of [18F]-altanserin binding to 5-HT2A receptors in normal volunteers: normative data and relationship to physiological and demographic variables , 2004, NeuroImage.

[34]  N. Volkow,et al.  Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[35]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.