All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance

We report a high ZT of ∼2.0 at 823 K for 2% Na-doped PbTe with 6% MgTe with excellent thermal stability. We attribute the high thermoelectric performance to a synergistic combination of enhanced power factor, reduction of the lattice thermal conductivity and simultaneous suppression of bipolar thermal conductivity. MgTe inclusion in PbTe owns triple functions: the Mg alloying within the solubility limit in PbTe modifies the valence band structure by pushing the two valence bands (L and Σ bands) closer in energy, thereby facilitating charge carrier injection. When the solubility limit of Mg is exceeded, ubiquitous endotaxial nanostructures form, which when coupled with mesoscale microstructuring results in a very low (lattice) thermal conductivity through all-scaled length phonon scattering. Meanwhile, most significantly, the Mg alloying enlarges the energy gap of conduction band (C band) and light valence band (L band), thereby suppresses the bipolar thermal conductivity through an increase in band gap.

[1]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[2]  M. Kanatzidis,et al.  Valence-band structure of highly efficient p -type thermoelectric PbTe-PbS alloys , 2013 .

[3]  Christopher M Wolverton,et al.  Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys , 2012 .

[4]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[5]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[6]  M. Kanatzidis,et al.  Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p‐type PbTe Doped with Na2Te , 2012 .

[7]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[8]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[9]  G. J. Snyder,et al.  Stabilizing the Optimal Carrier Concentration for High Thermoelectric Efficiency , 2011, Advanced materials.

[10]  M. Kanatzidis,et al.  High thermoelectric figure of merit in nanostructured p-type PbTe–MTe (M = Ca, Ba) , 2011 .

[11]  Ctirad Uher,et al.  High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. , 2011, Journal of the American Chemical Society.

[12]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[13]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[14]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[15]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[16]  Weishu Liu,et al.  High-performance nanostructured thermoelectric materials , 2010 .

[17]  M. Kanatzidis,et al.  Microstructure‐Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials , 2010 .

[18]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[19]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[20]  Gang Chen,et al.  Nanoscale design to enable the revolution in renewable energy , 2009, Energy & Environmental Science.

[21]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[22]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[23]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[24]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[25]  V. Ozoliņš,et al.  First-Principles Theory of Competing Order Types, Phase Separation, and Phonon Spectra in Thermoelectric AgPbmSbTem+2 Alloys , 2008, 0803.1165.

[26]  Jingfeng Li,et al.  Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering , 2007 .

[27]  Y. Isoda,et al.  Temperature dependence of thermoelectric properties of Ni-doped CoSb3 , 2005 .

[28]  C. Jia,et al.  Direct observation of a fully strained dead layer at Ba0.7Sr0.3TiO3∕SrRuO3 interface , 2005 .

[29]  Kuei-Fang Hsu,et al.  Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.

[30]  Xing Zhang,et al.  Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites , 2005 .

[31]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[32]  M. Kanatzidis,et al.  Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag-Sb microstructures. , 2004, Physical review letters.

[33]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[34]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[35]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[39]  L. M. Rogers,et al.  Transport properties of the CdxPb1?x Te alloy system , 1971 .

[40]  H J Goldsmid,et al.  The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride , 1958 .

[41]  L. Stil’bans,et al.  Semiconducting Lead Chalcogenides , 1970 .