Limits in detecting acceleration of ice sheet mass loss due to climate variability

The Greenland and Antarctic ice sheets have been reported to be losing mass at accelerating rates. Comparison of mass loss trends over the past decade with reconstructions of past mass loss indicates that the existing satellite record is too short to separate long-term mass loss trends from natural variability.

[1]  X. Fettweis,et al.  Hydrologic response of the Greenland ice sheet: the role of oceanographic warming , 2009 .

[2]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[3]  I. Joughin,et al.  21st-Century Evolution of Greenland Outlet Glacier Velocities , 2011, Science.

[4]  Willy P Aspinall,et al.  An expert judgement assessment of future sea level rise from the ice sheets , 2013 .

[5]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[6]  R. Curry,et al.  Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier , 2011 .

[7]  E. van Meijgaard,et al.  The KNMI regional atmospheric climate model RACMO version 2.1 , 2008 .

[8]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[9]  Konrad Steffen,et al.  Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing , 2011 .

[10]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[11]  Eric Rignot,et al.  Antarctic grounding line mapping from differential satellite radar interferometry , 2011 .

[12]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[13]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[14]  M. R. van den Broeke,et al.  Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation , 2004, Annals of Glaciology.

[15]  A. J. Miller,et al.  Factors affecting the detection of trends: Statistical considerations and applications to environmental data , 1998 .

[16]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[17]  R. Nicholls,et al.  The economic impact of substantial sea-level rise , 2010 .

[18]  G. Meehl,et al.  Effect of the potential melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and global climate in the future , 2011 .

[19]  Ingo Sasgen,et al.  Satellite gravimetry observation of Antarctic snow accumulation related to ENSO , 2010 .

[20]  Kenneth C. Jezek,et al.  Jakobshavn Glacier, west Greenland: 30 years of spaceborne observations , 1998 .

[21]  E. van Meijgaard,et al.  A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling , 2012 .

[22]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[23]  Jack L. Saba,et al.  Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002 , 2011, Journal of Glaciology.

[24]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[25]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[26]  David M. Holland,et al.  Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters , 2008 .

[27]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[28]  J. Picone,et al.  Statistical uncertainty of 1967–2005 thermospheric density trends derived from orbital drag , 2011 .