SHARP CONCENTRATION OF RANDOM POLYTOPES

We prove that key functionals (such as the volume and the number of vertices) of a random polytope is strongly concentrated, using a martingale method. As applications, we derive new estimates for high moments and the speed of convergence of these functionals.

[1]  Van H. Vu,et al.  Concentration of Multivariate Polynomials and Its Applications , 2000, Comb..

[2]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[3]  O. Barndorff-Nielsen,et al.  Stochastic Geometry , 1999 .

[4]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[5]  Van H. Vu,et al.  Concentration of non‐Lipschitz functions and applications , 2002, Random Struct. Algorithms.

[6]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[7]  J. Steele Probability theory and combinatorial optimization , 1987 .

[8]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[9]  Van H. Vu,et al.  Divide and conquer martingales and the number of triangles in a random graph , 2004, Random Struct. Algorithms.

[10]  B. Efron The convex hull of a random set of points , 1965 .

[11]  Imre Bárány,et al.  CONVEX-BODIES, ECONOMIC CAP COVERINGS, RANDOM POLYTOPES , 1988 .

[12]  Rex A. Dwyer,et al.  On the convex hull of random points in a polytope , 1988, Journal of Applied Probability.

[13]  V. Vu On the concentration of multivariate polynomials with small expectation , 2000, Random Struct. Algorithms.

[14]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[15]  Matthias Reitzner,et al.  Random polytopes and the Efron--Stein jackknife inequality , 2003 .

[16]  Imre Bfir,et al.  Intrinsic volumes and f-vectors of random polytopes , 1989 .

[17]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[18]  Van Vu,et al.  Central Limit Theorems for Random Polytopes in a Smooth Convex Set , 2005 .

[19]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[20]  Piet Groeneboom,et al.  Limit theorems for functionals of convex hulls , 1994 .

[21]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[22]  FEW POINTS TO GENERATE A RANDOM POLYTOPE , 1997 .

[23]  Irene Hueter,et al.  Limit theorems for the convex hull of random points in higher dimensions , 1999 .

[24]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .